CA6140機(jī)床后托架加工工藝及夾具設(shè)計(jì)(全套含CAD圖紙三維圖紙+開題報(bào)告+外文翻譯+答辯)
CA6140機(jī)床后托架加工工藝及夾具設(shè)計(jì)(全套含CAD圖紙三維圖紙+開題報(bào)告+外文翻譯+答辯),ca6140,機(jī)床,托架,加工,工藝,夾具,設(shè)計(jì),全套,cad,圖紙,三維,開題,報(bào)告,講演,呈文,外文,翻譯,答辯
目 錄摘 要 目 錄11 CA6140車床后托架的加工工藝設(shè)計(jì)11.1 CA6140車床后托架的結(jié)構(gòu)特點(diǎn)和技術(shù)要求21.2 CA6140車床后托架的材料、毛坯和熱處理21.2.1 毛坯材料及熱處理21.2.2 毛坯的結(jié)構(gòu)確定31.3 工藝過程設(shè)計(jì)中應(yīng)考慮的主要問題31.3.1 加工方法選擇的原則31.3.2 加工階段的劃分31.3.3 工序的合理組合41.3.4 加工順序的安排41.4 CA6140車床后托架的機(jī)械加工工藝過程分析51.4.1 CA6140車床后托架零件圖分析51.4.2 CA6140車床后托架的加工工藝的路線61.5 CA6140車床后托架的工序設(shè)計(jì)101.5.1 工序基準(zhǔn)的選擇101.5.2 工序尺寸的確定111.5.3 加工余量的確定131.5.4 確定各工序的加工設(shè)備和工藝裝備141.5.5 確定切削用量及工時(shí)定額152 三杠孔夾具設(shè)計(jì)專用夾具設(shè)計(jì)252.1 研究原始質(zhì)料252.2 定位基準(zhǔn)的選擇252.3 切削力及夾緊力的計(jì)算252.4 誤差分析與計(jì)算262.5 夾具設(shè)計(jì)及操作的簡要說明27結(jié) 論28參考文獻(xiàn)281 CA6140車床后托架的加工工藝設(shè)計(jì)機(jī)械加工工藝是實(shí)現(xiàn)產(chǎn)品設(shè)計(jì),保證產(chǎn)品質(zhì)量,節(jié)約能源,降低消耗的重要手段,是企業(yè)進(jìn)行生產(chǎn)準(zhǔn)備,計(jì)劃調(diào)度,加工操作,安全生產(chǎn),技術(shù)檢測(cè)和健全勞動(dòng)組織的重要依據(jù),也是企業(yè)上品種,上質(zhì)量,上水平,加速產(chǎn)品更新,提高經(jīng)濟(jì)效益的技術(shù)保證。在實(shí)際生產(chǎn)中,由于零件的生產(chǎn)類型、材料、結(jié)構(gòu)、形狀、尺寸和技術(shù)要求等不同,針對(duì)某一零件,往往不是單獨(dú)在一種機(jī)床上,用某一種加工方法就能完成的,而是要經(jīng)過一定的工藝過程才能完成其加工。因此,不僅要根據(jù)零件的具體要求,結(jié)合現(xiàn)場(chǎng)的具體條件,對(duì)零件的各組成表面選擇合適的加工方法,還要合理地安排加工順序,逐步地把零件加工出來。對(duì)于某個(gè)具體零件,可采用幾種不同的工藝方案進(jìn)行加工。雖然這些方案都可以加工出來合格的零件,但從生產(chǎn)效率和經(jīng)濟(jì)效益來看,可能其中有種方案比較合理且切實(shí)可行。因此,必須根據(jù)零件的具體要求和可能的加工條件等,擬訂較為合理的工藝過程。1.1 CA6140車床后托架的結(jié)構(gòu)特點(diǎn)和技術(shù)要求由零件圖1-1可得:CA6140車床后托架是鑄造件,從整體形狀來看類似長方體。根據(jù)要求主要是加工孔和底平面。具體特點(diǎn)和技術(shù)要求如下: 精加工孔, , 要求達(dá)到的精度等級(jí)為。粗糙度為,且以底平面為基準(zhǔn),要求平行度公差為,主要滿足加工孔的位置精度。 其他各個(gè)孔的加工都要以底平面為定位基準(zhǔn)。所以,底平面的形位公差要達(dá)到設(shè)計(jì)要求。 、粗糙度為;為錐孔,且粗糙度為。 其余未注要求的加工表面為不去除材料加工。1.2 CA6140車床后托架的材料、毛坯和熱處理1.2.1 毛坯材料及熱處理毛坯材料灰鑄鐵(HT150),由資料2機(jī)械加工工藝手冊(cè)表4-71,可得力學(xué)性能:表1.1灰鑄鐵(HT150)的性能參數(shù)牌號(hào)鑄件壁厚最小抗拉強(qiáng)度硬度鑄件硬度范圍金相組織HT1502.5-1010-2020-3030-50175145130120H175150-200鐵素體+珠光體灰鑄體一般的工作條件: 承受中等載荷的零件。 磨檫面間的單位面積壓力不大于490KPa。毛坯的熱處理灰鑄鐵(HT150)中的碳全部或大部分以片狀石墨方式存在鑄鐵中,由于片狀石墨對(duì)基體的割裂作用大,引起應(yīng)力集中也大;因此,使石墨片得到細(xì)化,并改善石墨片的分布,可提高鑄鐵的性能??刹捎檬嘶穑瑏硐T鐵表層和壁厚較薄的部位可能出現(xiàn)的白口組織(有大量的滲碳體出現(xiàn)),以便于切削加工。1.2.2 毛坯的結(jié)構(gòu)確定毛坯的結(jié)構(gòu)工藝要求CA6140車床后托架為鑄造件,對(duì)毛坯的結(jié)構(gòu)工藝有一定要求: 鑄件的壁厚應(yīng)和合適,均勻,不得有突然變化。 鑄造圓角要適當(dāng),不得有尖角。 鑄件結(jié)構(gòu)要盡量簡化,并要有和合理的起模斜度,以減少分型面、芯子、并便于起模。 加強(qiáng)肋的厚度和分布要合理,以免冷卻時(shí)鑄件變形或產(chǎn)生裂紋。 鑄件的選材要合理,應(yīng)有較好的可鑄性。毛坯形狀、尺寸確定的要求設(shè)計(jì)毛坯形狀、尺寸還應(yīng)考慮到: 各加工面的幾何形狀應(yīng)盡量簡單。 工藝基準(zhǔn)以設(shè)計(jì)基準(zhǔn)相一致。 便于裝夾、加工和檢查。 結(jié)構(gòu)要素統(tǒng)一,盡量使用普通設(shè)備和標(biāo)準(zhǔn)刀具進(jìn)行加工。在確定毛坯時(shí),要考慮經(jīng)濟(jì)性。雖然毛坯的形狀尺寸與零件接近,可以減少加工余量,提高材料的利用率,降低加工成本,但這樣可能導(dǎo)致毛坯制造困難,需要采用昂貴的毛坯制造設(shè)備,增加毛坯的制造成本。因此,毛坯的種類形狀及尺寸的確定一定要考慮零件成本的問題但要保證零件的使用性能。在毛坯的種類形狀及尺寸確定后,必要時(shí)可據(jù)此繪出毛坯圖。1.3 工藝過程設(shè)計(jì)中應(yīng)考慮的主要問題1.3.1 加工方法選擇的原則 所選加工方法應(yīng)考慮每種加工方法的經(jīng)濟(jì)、精度要求相適應(yīng)。 所選加工方法能確保加工面的幾何形狀精度,表面相互位置精度要求。 所選加工方法要與零件材料的可加工性相適應(yīng)。 加工方法要與生產(chǎn)類型相適應(yīng)。 所選加工方法企業(yè)現(xiàn)有設(shè)備條件和工人技術(shù)水平相適應(yīng)。1.3.2 加工階段的劃分按照加工性質(zhì)和作用的不同,工藝過程一般可劃分為三個(gè)加工階段: 粗加工階段粗加工的目的是切去絕大部分多雨的金屬,為以后的精加工創(chuàng)造較好的條件,并為半精加工,精加工提供定位基準(zhǔn),粗加工時(shí)能及早發(fā)現(xiàn)毛坯的缺陷,予以報(bào)廢或修補(bǔ),以免浪費(fèi)工時(shí)。粗加工可采用功率大,剛性好,精度低的機(jī)床,選用大的切前用量,以提高生產(chǎn)率、粗加工時(shí),切削力大,切削熱量多,所需夾緊力大,使得工件產(chǎn)生的內(nèi)應(yīng)力和變形大,所以加工精度低,粗糙度值大。一般粗加工的公差等級(jí)為,粗糙度為。 半精加工階段半精加工階段是完成一些次要面的加工并為主要表面的精加工做好準(zhǔn)備,保證合適的加工余量。半精加工的公差等級(jí)為。表面粗糙度為。 精加工階段 精加工階段切除剩余的少量加工余量,主要目的是保證零件的形狀位置幾精度,尺寸精度及表面粗糙度,使各主要表面達(dá)到圖紙要求.另外精加工工序安排在最后,可防止或減少工件精加工表面損傷。精加工應(yīng)采用高精度的機(jī)床小的切前用量,工序變形小,有利于提高加工精度精加工的加工精度一般為,表面粗糙度為。 光整加工階段對(duì)某些要求特別高的需進(jìn)行光整加工,主要用于改善表面質(zhì)量,對(duì)尺度精度改善很少。一般不能糾正各表面相互位置誤差,其精度等級(jí)一般為,表面粗糙度為。此外,加工階段劃分后,還便于合理的安排熱處理工序。由于熱處理性質(zhì)的不同,有的需安排于粗加工之前,有的需插入粗精加工之間。1.3.3 工序的合理組合確定加工方法以后,就按生產(chǎn)類型、零件的結(jié)構(gòu)特點(diǎn)、技術(shù)要求和機(jī)床設(shè)備等具體生產(chǎn)條件確定工藝過程的工序數(shù)。確定工序數(shù)的基本原則: 工序分散原則工序內(nèi)容簡單,有利選擇最合理的切削用量。便于采用通用設(shè)備。簡單的機(jī)床工藝裝備。生產(chǎn)準(zhǔn)備工作量少,產(chǎn)品更換容易。對(duì)工人的技術(shù)要求水平不高。但需要設(shè)備和工人數(shù)量多,生產(chǎn)面積大,工藝路線長,生產(chǎn)管理復(fù)雜。 工序集中原則工序數(shù)目少,工件裝,夾次數(shù)少,縮短了工藝路線,相應(yīng)減少了操作工人數(shù)和生產(chǎn)面積,也簡化了生產(chǎn)管理,在一次裝夾中同時(shí)加工數(shù)個(gè)表面易于保證這些表面間的相互位置精度。使用設(shè)備少,大量生產(chǎn)可采用高效率的專用機(jī)床,以提高生產(chǎn)率。但采用復(fù)雜的專用設(shè)備和工藝裝備,使成本增高,調(diào)整維修費(fèi)事,生產(chǎn)準(zhǔn)備工作量大。一般情況下,單件小批生產(chǎn)中,為簡化生產(chǎn)管理,多將工序適當(dāng)集中。但由于不采用專用設(shè)備,工序集中程序受到限制。結(jié)構(gòu)簡單的專用機(jī)床和工夾具組織流水線生產(chǎn)。1.3.4 加工順序的安排零件的加工過程通常包括機(jī)械加工工序,熱處理工序,以及輔助工序。在安排加工順序時(shí)常遵循以下原則:見下表表1.2 加工工序安排原則工序類別工序安排原則機(jī)械加工1) 對(duì)于形狀復(fù)雜、尺寸較大的毛坯,先安排劃線工序,為精基準(zhǔn)加工提供找正基準(zhǔn)2) 按“先基準(zhǔn)后其他”的順序,首先加工精基準(zhǔn)面3) 在重要表面加工前應(yīng)對(duì)精基準(zhǔn)進(jìn)行修正4) 按“先主后次,先粗后精”的順序5) 對(duì)于與主要表面有位置精度要求的次要表面應(yīng)安排在主要表面加工之后加工熱處理退火與正火毛坯預(yù)備性熱處理,應(yīng)安排在機(jī)械加工之前進(jìn)行時(shí)效為消除殘余應(yīng)力,對(duì)于尺寸大結(jié)構(gòu)復(fù)雜的鑄件,需在粗加工前、后各安排時(shí)效處理;對(duì)于一般鑄件在鑄造后或則粗加工后安排時(shí)效處理;對(duì)于精度高的鑄件,在半精加工前、后各安排一次時(shí)效處理淬火淬火后工件硬度提高,應(yīng)安排在精加工階段的磨削加工前進(jìn)行滲碳滲碳易產(chǎn)生變形,應(yīng)安排在精加工前滲氮一般安排在工藝過程的后部、該表面的最終加工之前輔助工序中間檢驗(yàn)一般安排在粗加工全部結(jié)束之后,精加工之前;花費(fèi)工時(shí)較多和重要工序的前后特種檢驗(yàn)熒光檢驗(yàn)、磁力探傷主要用于表面質(zhì)量的檢驗(yàn),通常安排在精加工階段。熒光如用于檢驗(yàn)毛坯的裂紋,則安排在加工前表面處理電鍍、涂層、發(fā)藍(lán)等表面處理工序一般安排在工序的最后進(jìn)行1.4 CA6140車床后托架的機(jī)械加工工藝過程分析1.4.1 CA6140車床后托架零件圖分析圖1.1 CA6140車床后托架零件圖由圖1-1可知:該零件為鑄件,材料為灰鑄鐵,重量為。要求加工、 、的精度等級(jí)為,粗糙度,且要求與底平面的平行度公差為。要求精加工底平面粗糙度,平面度公差為。要求加工、粗糙度為。是錐孔,要求精鉸加工,粗糙度。對(duì)于孔口進(jìn)行锪平加工。加工螺紋孔。1.4.2 CA6140車床后托架的加工工藝的路線擬定工藝路線是制定工藝過程的關(guān)鍵性的一步。在擬定時(shí)應(yīng)充分調(diào)查研究,多提幾個(gè)方案,加以分析比較確定一個(gè)最合理方案。采用加工方法一般所能達(dá)到的公差等級(jí)和表面粗糙度以及需留的加工余量 表1.3 (參考參數(shù))加工表面 加工方法表面粗糙度Ra表面光潔度公差等級(jí)公差等級(jí)加工余量說 明外圓粗 車半精車精 車細(xì) 車粗 磨精 磨研 磨12.56.31.60.81.00.40.11345677867891014IT12IT11IT10IT9IT8IT7IT6IT5IT8IT7IT6IT5IT6IT5111010887767645150.501.600.20.50.10.250.250.850.060.100.03指尺寸在直徑180以下,長度在500以下,鑄件的直徑余量內(nèi)孔鉆 孔擴(kuò) 孔粗 鏜半精鏜精 鏜細(xì) 鏜粗 鉸精 鉸粗 磨精 磨研 磨256.36.31.60.80.23.21.61.60.20.113452456679105667679101014IT13IT11IT10IT9IT10IT9IT9IT8IT8IT7IT7IT6IT8IT7IT8IT7IT6IT7IT610898876877676540.30.51.81.01.80.50.80.10.30.10.550.40.20.20.30.20.50.10.20.010.02指孔徑在180以下,鑄件直徑的余量.L/d2L/d=210時(shí),加工誤差增加1.22倍平面粗刨,粗銑精刨,精銑細(xì)刨,細(xì)銑粗 磨半精磨精 磨研 磨12.56.30.81.60.80.80.11346786779791014IT14IT11IT10IT9IT6IT9IT7IT6IT7IT6IT511910986867575520.92.30.20.30.160.050.030.030.010.03指平面最大尺寸500以下的鑄件的平面余量主要工序的加工工藝路線 根據(jù)孔的技術(shù)要求,由資料7公差與配合技術(shù)手冊(cè)得:,;根據(jù)公式;查資料6互換性與技術(shù)測(cè)量表1-8得:精度等級(jí)為。同理可得:孔精度等級(jí)為??拙鹊燃?jí)為。由上述的技術(shù)要求(粗糙度和精度等級(jí)),選擇合理、經(jīng)濟(jì)的加工方式,查表1.3可得孔的加工工藝路線為:鉆粗鉸精鉸 根據(jù)孔、粗糙度為,查資料7公差與配合技術(shù)手冊(cè)得:與有一定的線性關(guān)系:即:查公差與配合技術(shù)手冊(cè)表,取由上述的技術(shù)要求(粗糙度和精度等級(jí)),選擇合理、經(jīng)濟(jì)的加工方式,查表1.3可得孔的加工工藝路線為:鉆孔擴(kuò)孔 孔錐孔粗糙度為由上述的技術(shù)要求(粗糙度和精度等級(jí)),選擇合理、經(jīng)濟(jì)的加工方式,查表1.3可得孔的加工工藝路線為:粗鉸精鉸 底平面A粗糙度為由上述的技術(shù)要求(粗糙度和精度等級(jí)),選擇合理、經(jīng)濟(jì)的加工方式,查表1.3可得孔的加工工藝路線為:粗銑精銑細(xì)銑CA6140后托架加工工藝路線的確定 加工工藝路線方案在保證零件尺寸公差、形位公差及表面粗糙度等技術(shù)條件下,成批量生產(chǎn)可以考慮采用專用機(jī)床,以便提高生產(chǎn)率。但同時(shí)考慮到經(jīng)濟(jì)效果,降低生產(chǎn)成本,擬訂兩個(gè)加工工藝路線方案。見下表:表1.4 加工工藝路線方案工序號(hào)方案方案工序內(nèi)容定位基準(zhǔn)工序內(nèi)容定位基準(zhǔn)010粗刨底平面?zhèn)让婧屯鈭A粗、精銑底平面?zhèn)让婧屯鈭A020精銑底平粗側(cè)面和外圓鉆、擴(kuò)孔:、底面和側(cè)面030細(xì)精銑底平 側(cè)面和外圓粗鉸孔:、底面和側(cè)面040鉆、擴(kuò)孔:、 底面和側(cè)面粗銑油槽底面和側(cè)面050粗鉸孔:、 底面和側(cè)面精鉸孔:、底面和側(cè)面060精鉸孔:、 側(cè)面和兩孔锪鉆孔:底面和側(cè)面070粗銑油槽底面和側(cè)面鉆:、底面和側(cè)面080锪鉆孔:底面和側(cè)面擴(kuò)孔底面和側(cè)面090鉆:、底面和側(cè)面精鉸錐孔:底面和側(cè)面110擴(kuò)孔底面和側(cè)面锪鉆孔:、底面和側(cè)面120精鉸錐孔:底面和側(cè)面去毛刺130锪鉆孔:、底面和側(cè)面鉆:、底面和孔140鉆:、底面和孔攻螺紋底面和孔150攻螺紋底面和孔細(xì)精銑底平面?zhèn)让婧涂?60倒角去毛刺倒角去毛刺170檢驗(yàn)檢驗(yàn) 加工工藝路線方案的論證a.方案中的010和150工序在銑床上加工底平面,主要考慮到被加工表面的不連續(xù),并且加工表面積不是很大,工件受太大的切削力易變形,不能保證平面的平面度公差。方案比方案銑平面生產(chǎn)效率底,采用銑較經(jīng)濟(jì)合理。b.方案在012工序中按排倒角去毛刺,這不僅避免劃傷工人的手,而且給以后的定位及裝配得到可靠的保證。c.方案在010工序中先安排銑底平面,主要是因?yàn)榈灼矫媸且院蠊ば虻闹饕ㄎ幻嬷?,為提高定位精度。d.方案把細(xì)精銑底平面A安排在后工序中,是以免劃傷而影響美觀及裝配質(zhì)量。e.方案符合粗精加工分開原則。由以上分析:方案為合理、經(jīng)濟(jì)的加工工藝路線方案。具體的工藝過程如下表:表1.5 加工工藝路線工序號(hào)工 種工作內(nèi)容說 明010鑄砂型鑄造鑄件毛坯尺寸:長: 寬: 高: 020清砂除去澆冒口,鋒邊及型砂030熱處理退火石墨化退火,來消除鑄鐵表層和壁厚較薄的部位可能出現(xiàn)的白口組織(有大量的滲碳體出現(xiàn)),以便于切削加工040檢驗(yàn)檢驗(yàn)毛坯050銑粗銑、精銑底平面工件用專用夾具裝夾;立式銑床060鉆鉆、擴(kuò)鉆:工件用專用夾具裝夾;搖臂鉆床070銑粗銑油槽080鉸粗、精鉸孔:工件用專用夾具裝夾;搖臂鉆床090鉆將孔、鉆到直徑工件用專用夾具裝夾;搖臂鉆床110擴(kuò)孔鉆將擴(kuò)孔到要求尺寸120锪孔鉆锪孔、到要求尺寸130鉸精鉸錐孔140鉗去毛刺150鉆鉆孔、160攻絲攻螺紋170銑細(xì)精銑底平面工件用專用夾具裝夾;立式銑床180鉗倒角去毛刺190檢驗(yàn)210入庫清洗,涂防銹油1.5 CA6140車床后托架的工序設(shè)計(jì)工序設(shè)計(jì)包括工序基準(zhǔn)的選擇、工序尺寸的確定、加工余量的確定、機(jī)床的選擇、工藝裝備的選擇、切削用量的選擇和時(shí)間定額的確定。1.5.1 工序基準(zhǔn)的選擇工序是在工序圖上以標(biāo)定被加工表面位置尺寸和位置精度的基準(zhǔn)。所標(biāo)定的位置尺寸和位置精度分別稱為工序尺寸和工序技術(shù)要求,工序尺寸和工序技術(shù)要求的內(nèi)容在加工后應(yīng)進(jìn)行測(cè)量,測(cè)量時(shí)所用的基準(zhǔn)稱為測(cè)量基準(zhǔn)。通常工序基準(zhǔn)和測(cè)量基準(zhǔn)重合。工序基準(zhǔn)的選擇應(yīng)注意以下幾點(diǎn): 選設(shè)計(jì)基準(zhǔn)為工序基準(zhǔn)時(shí),對(duì)工序尺寸的檢驗(yàn)就是對(duì)設(shè)計(jì)尺寸的檢驗(yàn),有利于減少檢驗(yàn)工作量。 當(dāng)本工序中位置精度是由夾具保證而不需要進(jìn)行試切,應(yīng)使工序基準(zhǔn)與設(shè)計(jì)基準(zhǔn)重合。 對(duì)一次安裝下所加工出來的各個(gè)表面,各加工面之間的工序尺寸應(yīng)與設(shè)計(jì)尺寸一致。1.5.2 工序尺寸的確定孔、 、中心軸線間的尺寸鏈的計(jì)算 尺寸鏈圖(如圖1.2) 圖1.2尺寸鏈圖 的基本尺寸由公式:=得: 環(huán)公差 式(1.1) 式(1.2) 中間偏差 式(1.3) 環(huán)極限偏差 式(1.4) 環(huán)極限尺寸 孔、 、的工序尺寸和公差 孔 ,粗糙度要求為,加工路線為: 鉆粗鉸精鉸查表1.3確定各工序的基本余量為:鉆: 擴(kuò)鉆: 粗鉸: 精鉸: 各工序的工序尺寸:精鉸后:由零件圖可知;粗鉸后:;擴(kuò)鉆后:;鉆后:;各工序的公差按加工方法的經(jīng)濟(jì)精度確定,標(biāo)注為:精鏜后:由零件圖可知;粗鉸后:按級(jí)查資料6互換性與技術(shù)測(cè)量表;可得擴(kuò)鉆后:按級(jí)查資料6互換性與技術(shù)測(cè)量表;可得鉆后: 孔,粗糙度要求為同理:精鉸后:由零件圖可知粗鉸后: 擴(kuò)鉆后: 鉆后: 孔,粗糙度要求為同理:精鉸后:由零件圖可知粗鉸后: 擴(kuò)鉆后: 鉆后:1.5.3 加工余量的確定加工余量、工序尺寸及偏差查資料2機(jī)械加工工藝手冊(cè)表6-20,并計(jì)算列表如下:表1.6 加工余量、工序尺寸及偏差確定序號(hào)加工表面加工內(nèi)容加工余量表面粗糟度尺寸及偏差備注1底平面粗銑精銑細(xì)精銑2鉆擴(kuò)鉆粗鉸精鉸3 锪孔深;深;深;4鉆孔深擴(kuò)孔5鉆孔深粗鉸錐孔精鉸錐孔6鉆螺紋孔深攻絲7鉆深1.5.4 確定各工序的加工設(shè)備和工藝裝備機(jī)床的選用查資料1機(jī)械加工工藝手冊(cè)可得:立式銑床,主要用于銑加工。 搖臂鉆床,可用于鉆、擴(kuò)、鉸及攻絲。刀具的選用 查資料1機(jī)械加工工藝手冊(cè)可得:高速鋼端面銑刀,銑刀材料:,刀具的角度?。?鉆頭:直柄麻花鉆 直柄短麻花鉆 直柄長麻花鉆 鑄鐵群鉆 直柄擴(kuò)孔鉆 錐柄擴(kuò)孔鉆 锪鉆:帶導(dǎo)柱直柄平底锪鉆 鉸刀:硬質(zhì)合金錐柄機(jī)用鉸刀 錐鉸刀:公制/莫氏4號(hào)錐直柄鉸刀,刀具材料:其他設(shè)備的選用 夾具:夾具采用專用的銑、鉆夾具 量具選用:錐柄雙頭塞規(guī),多用游標(biāo)卡尺 輔助設(shè)備:銼刀、鉗子等1.5.5 確定切削用量及工時(shí)定額銑底平面A的切削用量及工時(shí)定額 粗銑 由資料1機(jī)械加工工藝手冊(cè)表2.4-73得:取,;由銑刀直徑,銑刀齒數(shù) ;則:主軸轉(zhuǎn)速 ,則取 式(1.5)實(shí)際銑削速度 式(1.6) 式(1.7)銑刀切入時(shí)?。?式(1.8)銑刀切出時(shí)?。罕磺邢鲗娱L度:由毛坯尺寸可知根據(jù)資料5機(jī)械制造工藝學(xué)表可得: 式(1.9) 精銑 由資料1機(jī)械加工工藝手冊(cè)表得:, ;由式1.5得,主軸轉(zhuǎn)速 ,則取由式1.6得,實(shí)際銑削速度由式1.7得,同理:由式1.9得 細(xì)精銑 由資料1機(jī)械加工工藝手冊(cè)表得:, ;由式1.5,主軸轉(zhuǎn)速 ,則取由式1.6得,實(shí)際銑削速度由式1.7得, 同理:由式1.9得 鉆、擴(kuò)、鉸、锪孔加工的切削用量及工時(shí)定額 鉆、擴(kuò)、鉸孔、的切削用量及工時(shí)定額鉆孔加工鉆孔:由資料1機(jī)械加工工藝手冊(cè)表得:進(jìn)給量,切削速度,;由式1.5得,機(jī)床主軸轉(zhuǎn)速,取由式1.6得,實(shí)際切削速度 被切削層長度:刀具切入長度: 式(1.10)刀具切出長度: 取 根據(jù)資料5機(jī)械制造工藝學(xué)表可得 式(1.11)同理:鉆孔由資料1機(jī)械加工工藝手冊(cè)表得: ,;由式1.5得,取由式1.6得,根據(jù)式1.11可得 同理:鉆孔由資料1機(jī)械加工工藝手冊(cè)表得:,;由式1.5得,取由式1.6得,根據(jù)式1.11可得 擴(kuò)孔加工擴(kuò)孔:由資料1機(jī)械加工工藝手冊(cè)表2.4-52,取, ,切削深度,;由式1.5得,取由式1.6得, 由式1.10得,刀具切出長度: 取根據(jù)式1.11可得:同理:擴(kuò)孔由資料1機(jī)械加工工藝手冊(cè)表2.4-52,取, ,;由式1.5得,取由式1.6得,根據(jù)式1.11可得:同理:擴(kuò)孔由資料1機(jī)械加工工藝手冊(cè)表2.4-52,取, ,;由式1.5得,取由式1.6得,根據(jù)式1.11可得:鉸孔加工鉸孔:由資料1機(jī)械加工工藝手冊(cè)表得:; 由式1.5得,取由式1.6得, ,鉸圓柱孔時(shí),由資料1機(jī)械加工工藝手冊(cè)表得:根據(jù)式1.11可得:同理:鉸孔由資料1機(jī)械加工工藝手冊(cè)表得:,; 由式1.5得,取由式1.6得, ,鉸圓柱孔時(shí),由資料1機(jī)械加工工藝手冊(cè)表得:根據(jù)式1.11可得:同理:鉸孔由資料1機(jī)械加工工藝手冊(cè)表得:,; 由式1.5得,取由式1.6得, ,鉸圓柱孔時(shí),由資料1機(jī)械加工工藝手冊(cè)表得:根據(jù)式1.11可得: 加工孔、的切削用量及工時(shí)定額將、鉆到直徑由資料1機(jī)械加工工藝手冊(cè)表查得:進(jìn)給量,切削速度,切削深度;由式1.5得,取由式1.6得, 被切削層長度:由式1.10得:刀具切出長度: 取 根據(jù)式1.11可得: 擴(kuò)孔擴(kuò)孔由資料1機(jī)械加工工藝手冊(cè)表2.4-52,取, ,切削深度;由式1.5得,取由式1.6得, 被切削層長度:由式1.10得:刀具切出長度: 取根據(jù)式1.11可得: 鉸錐孔鉸錐孔由資料1機(jī)械加工工藝手冊(cè)表得:,切削深度;由式1.5得,取由式1.6得,取, 式(1.12)根據(jù)式1.11可得:锪孔(、)由資料1機(jī)械加工工藝手冊(cè)表得:進(jìn)給量,切削速度;則孔:,;取,;則由式1.11得,孔:,;取,;則由式1.11得,孔:,;取,;則由式1.11得,锪孔加工總的基本時(shí)間 :鉆由資料1機(jī)械加工工藝手冊(cè)表得:進(jìn)給量,切削速度,切削深度;由式1.5得,取由式1.6得, 被切削層長度:由式1.10得:刀具切出長度: 取 根據(jù)式1.11可得: 加工螺紋孔的切削用量及工時(shí)定額鉆螺紋孔由資料1機(jī)械加工工藝手冊(cè)表得:進(jìn)給量,切削速度,切削深度;由式1.5得,取由式1.6得,被切削層長度:由式1.10得:刀具切出長度: 取根據(jù)式1.11可得:攻絲根據(jù)查表:螺距,;由式1.5得,取由式1.6得,根據(jù)式1.11可得:由以上計(jì)算可得總的基本時(shí)間 技術(shù)時(shí)間定額除了基本時(shí)間以外,還包括輔助時(shí)間、服務(wù)時(shí)間、休息及自然需要時(shí)間、準(zhǔn)備終結(jié)時(shí)間所組成。 輔助時(shí)間輔助時(shí)間主要包括卸載工件,開停機(jī)床,改變切削用量和測(cè)量工件等所用的時(shí)間。 服務(wù)時(shí)間 休息及自然需要時(shí)間 準(zhǔn)備終結(jié)時(shí)間將上述所列的各項(xiàng)時(shí)間組合起來,可得到各種定額時(shí)間:工序時(shí)間:單件時(shí)間: 單件計(jì)算時(shí)間:其中:N零件批量(件)25 2 三杠孔夾具設(shè)計(jì)專用夾具設(shè)計(jì)機(jī)床夾具設(shè)計(jì)是工藝裝備設(shè)計(jì)中的一個(gè)重要組成部分,在整個(gè)加工構(gòu)成中,夾具不僅僅是為了夾緊、固定被加工零件,設(shè)計(jì)合理的夾具,還要求保證加工零件的位置精度、提高加工生產(chǎn)率。各種專用夾具的設(shè)計(jì)質(zhì)量,將直接影響被加工零件的精度要求,在機(jī)械加工工藝過程中起到重要的作用。在設(shè)計(jì)的過程當(dāng)中,應(yīng)深入生產(chǎn)實(shí)際,進(jìn)行調(diào)查研究,吸取國內(nèi)外先進(jìn)技術(shù),制定出合理的設(shè)計(jì)方案,在進(jìn)行具體設(shè)計(jì)。2.1 研究原始質(zhì)料利用本夾具主要用來鉆、鉸加工孔、。加工時(shí)除了要滿足粗糙度要求外,還應(yīng)滿足孔軸線對(duì)底平面的平行度公差要求。為了保證技術(shù)要求,最關(guān)鍵是找到定位基準(zhǔn)。同時(shí),應(yīng)考慮如何提高勞動(dòng)生產(chǎn)率和降低勞動(dòng)強(qiáng)度。2.2 定位基準(zhǔn)的選擇由零件圖可知:孔、的軸線與底平面有平行度公差要求,在對(duì)孔進(jìn)行加工前,底平面進(jìn)行了粗銑加工。因此,選底平面為定位精基準(zhǔn)(設(shè)計(jì)基準(zhǔn))來滿足平行度公差要求???、的軸線間有位置公差,選擇左端面為定位基準(zhǔn)來設(shè)計(jì)鉆模,從而滿足孔軸線間的位置公差要求。工件定位用底平面和兩個(gè)側(cè)面來限制六個(gè)自由度。2.3 切削力及夾緊力的計(jì)算由資料10機(jī)床夾具設(shè)計(jì)手冊(cè)查表可得:切削力公式: 式(2.11)式中 查資料10機(jī)床夾具設(shè)計(jì)手冊(cè)表得: 即由式2.11得:切削扭矩公式 : 式(2.12)即:根據(jù)工件受力切削力、夾緊力的作用情況,找出在加工過程中對(duì)夾緊最不利的瞬間狀態(tài),按靜力平衡原理計(jì)算出理論夾緊力。最后為保證夾緊可靠,再乘以安全系數(shù)作為實(shí)際所需夾緊力的數(shù)值。 由資料10機(jī)床夾具設(shè)計(jì)手冊(cè)表得: 式(2.13) 取, 即:螺旋夾緊時(shí)產(chǎn)生的夾緊力按式2.6計(jì)算:式中參數(shù)由資料10機(jī)床夾具設(shè)計(jì)手冊(cè)可查得: 其中: 螺旋夾緊力:該夾具采用螺旋夾緊機(jī)構(gòu),用螺栓通過弧形壓塊壓緊工件。受力簡圖如下: 圖2.1 受力簡圖由資料10機(jī)床夾具設(shè)計(jì)手冊(cè)表得:原動(dòng)力計(jì)算公式 式(2.14)即: 由上述計(jì)算易得: 因此采用該夾緊機(jī)構(gòu)工作是可靠的。2.4 誤差分析與計(jì)算該夾具以底平面、側(cè)面和蓋板平面為定位基準(zhǔn),要求保證孔軸線與左側(cè)面間的尺寸公差以及孔軸線與底平面的平行度公差。為了滿足工序的加工要求,必須使工序中誤差總和等于或小于該工序所規(guī)定的工序公差。孔軸線與左側(cè)面為線性尺寸一般公差。根據(jù)國家標(biāo)準(zhǔn)的規(guī)定,由資料6互換性與技術(shù)測(cè)量表可知:?。ㄖ械燃?jí))即 :尺寸偏差為由資料10機(jī)床夾具設(shè)計(jì)手冊(cè)可得: 定位誤差(兩個(gè)垂直平面定位): 夾緊誤差 : 其中接觸變形位移值: 式(2.15) 磨損造成的加工誤差:通常不超過 夾具相對(duì)刀具位置誤差:取誤差總和:從以上的分析可見,所設(shè)計(jì)的夾具能滿足零件的加工精度要求。2.5 夾具設(shè)計(jì)及操作的簡要說明本夾具用于在搖臂鉆床上加工后托架的三杠孔。工件以底平面、側(cè)面和蓋板平面為定位基準(zhǔn),在支承釘和止推板上實(shí)現(xiàn)完全定位。為工件裝夾可靠,采用了輔助支承。如前所述,應(yīng)該注意提高生產(chǎn)率,但該夾具設(shè)計(jì)采用了手動(dòng)夾緊方式,在夾緊和松開工件時(shí)比較費(fèi)時(shí)費(fèi)力。由于該工件體積小,工件材料易切削,切削力不大等特點(diǎn)。經(jīng)過方案的認(rèn)真分析和比較,選用了手動(dòng)夾緊方式(螺旋夾緊機(jī)構(gòu))。這類夾緊機(jī)構(gòu)結(jié)構(gòu)簡單、夾緊可靠、通用性大,在機(jī)床夾具中很廣泛的應(yīng)用。結(jié) 論通過本次的畢業(yè)設(shè)計(jì),使我能夠?qū)镜闹R(shí)做進(jìn)一步的了解與學(xué)習(xí),對(duì)資料的查詢與合理的應(yīng)用做了更深入的了解,本次進(jìn)行工件的工藝路線分析、工藝卡的制定、工藝過程的分析、銑鉆夾具的設(shè)計(jì)與分析,對(duì)我們?cè)诖髮W(xué)期間所學(xué)的課程進(jìn)行了實(shí)際的應(yīng)用與綜合的學(xué)習(xí)。參考文獻(xiàn)1 孟少龍機(jī)械加工工藝手冊(cè)第1卷M北京:機(jī)械工業(yè)出版社,19912 李洪機(jī)械加工工藝手冊(cè)M北京:機(jī)械工業(yè)出版社,19903金屬機(jī)械加工工藝人員手冊(cè)修訂組金屬機(jī)械加工工藝人員手冊(cè)M上海:上??茖W(xué)技術(shù)出版社,19974 于駿一典型零件制造工藝M北京:機(jī)械工業(yè)出版社,19895 王季琨、沈中偉、劉錫珍機(jī)械制造工藝學(xué)M天津:天津大學(xué)出版社,20046 莫雨松、李碩根等互換性與技術(shù)測(cè)量M中國計(jì)量出版社,19887 方昆凡公差與配合技術(shù)手冊(cè)M北京:北京出版社,19848 馬賢智機(jī)械加工余量與公差手冊(cè)M北京:中國標(biāo)準(zhǔn)出版社,19949 上海金屬切削技術(shù)協(xié)會(huì)金屬切削手冊(cè)M上海:上海科學(xué)技術(shù)出版社,198410 東北重型機(jī)械學(xué)院、洛陽農(nóng)業(yè)機(jī)械學(xué)院、長春汽車廠工人大學(xué)機(jī)床夾具設(shè)計(jì)手冊(cè)M上海:上??茖W(xué)技術(shù)出版社,198011 余光國、馬俊、張興發(fā)機(jī)床夾具設(shè)計(jì)M重慶:重慶大學(xué)出版社,199512 東北重型機(jī)械學(xué)院等機(jī)床夾具設(shè)計(jì)手冊(cè)M上海:上??茖W(xué)技術(shù)出版社,1979。13 劉文劍、曹天河、趙維夾具工程師手冊(cè)M哈爾濱:黑龍江科學(xué)技術(shù)出版社,198714 貴州工學(xué)院機(jī)械制造工藝教研室機(jī)床夾具結(jié)構(gòu)圖冊(cè)M貴陽:貴州人民出版社,198315 孫已德機(jī)床夾具圖冊(cè)M北京:機(jī)械工業(yè)出版社,198416 成大先機(jī)械設(shè)計(jì)手冊(cè)單行本連接與緊固M北京,化學(xué)工業(yè)出版社,200430 附件1:畢業(yè)設(shè)計(jì)(論文)任務(wù)書1.畢業(yè)設(shè)計(jì)(論文)題目:CA6140機(jī)床后托架加工工藝及夾具設(shè)計(jì) 2.學(xué)生完成全部任務(wù)期限: 3.任務(wù)要求:(1)、設(shè)計(jì)內(nèi)容:制訂年產(chǎn)5000臺(tái)CA6140機(jī)床后托架的加工工藝;(2)、設(shè)計(jì)主視圖中的三孔的加工夾具;(3)、設(shè)計(jì)銑底面的夾具;(4)、設(shè)計(jì)俯視圖中4孔的加工夾具;(5)、提交夾具裝配圖、零件圖、加工工藝卡片、設(shè)計(jì)說明書及精度分析等相關(guān)設(shè)計(jì)分析結(jié)果。 注意:多人做一題時(shí),設(shè)計(jì)方案、內(nèi)容不能相同 4.實(shí)驗(yàn)(調(diào)驗(yàn))部分內(nèi)容要求:(1)、查閱相關(guān)資料,分析所給題目的零件結(jié)構(gòu)工藝性,編排出該零件的合理的加工工藝過程,選擇各加工工序的合理的切削用量,計(jì)算各工序的定額,填寫零件的加工工藝卡片;(2)、完成給定加工面的夾具設(shè)計(jì)(須有方案分析比較、優(yōu)選),每套夾具須完成裝配圖1張,夾具主要零、部件2-3張; (3)、編寫夾具的設(shè)計(jì)說明書,字?jǐn)?shù)在15000字以上。 5.文獻(xiàn)查閱及翻譯要求:(1)、機(jī)械加工工藝人員手冊(cè); (2)、機(jī)床家具設(shè)計(jì)手冊(cè); (3)、機(jī)床夾具圖冊(cè); (4)、翻譯有關(guān)機(jī)械制造方面10000個(gè)字符以上的外文資料,字?jǐn)?shù)不得少于三千。 6.發(fā)出日期: 指導(dǎo)教師:完成任務(wù)日期:學(xué)生: 本科畢業(yè)設(shè)計(jì)(論文)外文譯文外語文獻(xiàn)翻譯摘自: 制造工程與技術(shù)(機(jī)加工)(英文版) Manufacturing Engineering and TechnologyMachining 機(jī)械工業(yè)出版社 2004年3月第1版 美 s. 卡爾帕基安(Serope kalpakjian) s.r 施密德(Steven R.Schmid) 著原文:20.9 MACHINABILITYThe machinability of a material usually defined in terms of four factors:1、 Surface finish and integrity of the machined part;2、 Tool life obtained;3、 Force and power requirements;4、 Chip control. Thus, good machinability good surface finish and integrity, long tool life, and low force And power requirements. As for chip control, long and thin (stringy) cured chips, if not broken up, can severely interfere with the cutting operation by becoming entangled in the cutting zone.Because of the complex nature of cutting operations, it is difficult to establish relationships that quantitatively define the machinability of a material. In manufacturing plants, tool life and surface roughness are generally considered to be the most important factors in machinability. Although not used much any more, approximate machinability ratings are available in the example below.20.9.1 Machinability Of SteelsBecause steels are among the most important engineering materials (as noted in Chapter 5), their machinability has been studied extensively. The machinability of steels has been mainly improved by adding lead and sulfur to obtain so-called free-machining steels.Resulfurized and Rephosphorized steels. Sulfur in steels forms manganese sulfide inclusions (second-phase particles), which act as stress raisers in the primary shear zone. As a result, the chips produced break up easily and are small; this improves machinability. The size, shape, distribution, and concentration of these inclusions significantly influence machinability. Elements such as tellurium and selenium, which are both chemically similar to sulfur, act as inclusion modifiers in resulfurized steels.Phosphorus in steels has two major effects. It strengthens the ferrite, causing increased hardness. Harder steels result in better chip formation and surface finish. Note that soft steels can be difficult to machine, with built-up edge formation and poor surface finish. The second effect is that increased hardness causes the formation of short chips instead of continuous stringy ones, thereby improving machinability.Leaded Steels. A high percentage of lead in steels solidifies at the tip of manganese sulfide inclusions. In non-resulfurized grades of steel, lead takes the form of dispersed fine particles. Lead is insoluble in iron, copper, and aluminum and their alloys. Because of its low shear strength, therefore, lead acts as a solid lubricant (Section 32.11) and is smeared over the tool-chip interface during cutting. This behavior has been verified by the presence of high concentrations of lead on the tool-side face of chips when machining leaded steels.When the temperature is sufficiently high-for instance, at high cutting speeds and feeds (Section 20.6)the lead melts directly in front of the tool, acting as a liquid lubricant. In addition to this effect, lead lowers the shear stress in the primary shear zone, reducing cutting forces and power consumption. Lead can be used in every grade of steel, such as 10xx, 11xx, 12xx, 41xx, etc. Leaded steels are identified by the letter L between the second and third numerals (for example, 10L45). (Note that in stainless steels, similar use of the letter L means “l(fā)ow carbon,” a condition that improves their corrosion resistance.)However, because lead is a well-known toxin and a pollutant, there are serious environmental concerns about its use in steels (estimated at 4500 tons of lead consumption every year in the production of steels). Consequently, there is a continuing trend toward eliminating the use of lead in steels (lead-free steels). Bismuth and tin are now being investigated as possible substitutes for lead in steels.Calcium-Deoxidized Steels. An important development is calcium-deoxidized steels, in which oxide flakes of calcium silicates (CaSo) are formed. These flakes, in turn, reduce the strength of the secondary shear zone, decreasing tool-chip interface and wear. Temperature is correspondingly reduced. Consequently, these steels produce less crater wear, especially at high cutting speeds.Stainless Steels. Austenitic (300 series) steels are generally difficult to machine. Chatter can be s problem, necessitating machine tools with high stiffness. However, ferritic stainless steels (also 300 series) have good machinability. Martensitic (400 series) steels are abrasive, tend to form a built-up edge, and require tool materials with high hot hardness and crater-wear resistance. Precipitation-hardening stainless steels are strong and abrasive, requiring hard and abrasion-resistant tool materials.The Effects of Other Elements in Steels on Machinability. The presence of aluminum and silicon in steels is always harmful because these elements combine with oxygen to form aluminum oxide and silicates, which are hard and abrasive. These compounds increase tool wear and reduce machinability. It is essential to produce and use clean steels.Carbon and manganese have various effects on the machinability of steels, depending on their composition. Plain low-carbon steels (less than 0.15% C) can produce poor surface finish by forming a built-up edge. Cast steels are more abrasive, although their machinability is similar to that of wrought steels. Tool and die steels are very difficult to machine and usually require annealing prior to machining. Machinability of most steels is improved by cold working, which hardens the material and reduces the tendency for built-up edge formation.Other alloying elements, such as nickel, chromium, molybdenum, and vanadium, which improve the properties of steels, generally reduce machinability. The effect of boron is negligible. Gaseous elements such as hydrogen and nitrogen can have particularly detrimental effects on the properties of steel. Oxygen has been shown to have a strong effect on the aspect ratio of the manganese sulfide inclusions; the higher the oxygen content, the lower the aspect ratio and the higher the machinability.In selecting various elements to improve machinability, we should consider the possible detrimental effects of these elements on the properties and strength of the machined part in service. At elevated temperatures, for example, lead causes embrittlement of steels (liquid-metal embrittlement, hot shortness; see Section 1.4.3), although at room temperature it has no effect on mechanical properties.Sulfur can severely reduce the hot workability of steels, because of the formation of iron sulfide, unless sufficient manganese is present to prevent such formation. At room temperature, the mechanical properties of resulfurized steels depend on the orientation of the deformed manganese sulfide inclusions (anisotropy). Rephosphorized steels are significantly less ductile, and are produced solely to improve machinability.20.9.2 Machinability of Various Other Metals Aluminum is generally very easy to machine, although the softer grades tend to form a built-up edge, resulting in poor surface finish. High cutting speeds, high rake angles, and high relief angles are recommended. Wrought aluminum alloys with high silicon content and cast aluminum alloys may be abrasive; they require harder tool materials. Dimensional tolerance control may be a problem in machining aluminum, since it has a high thermal coefficient of expansion and a relatively low elastic modulus.Beryllium is similar to cast irons. Because it is more abrasive and toxic, though, it requires machining in a controlled environment.Cast gray irons are generally machinable but are. Free carbides in castings reduce their machinability and cause tool chipping or fracture, necessitating tools with high toughness. Nodular and malleable irons are machinable with hard tool materials.Cobalt-based alloys are abrasive and highly work-hardening. They require sharp, abrasion-resistant tool materials and low feeds and speeds.Wrought copper can be difficult to machine because of built-up edge formation, although cast copper alloys are easy to machine. Brasses are easy to machine, especially with the addition pf lead (leaded free-machining brass). Bronzes are more difficult to machine than brass.Magnesium is very easy to machine, with good surface finish and prolonged tool life. However care should be exercised because of its high rate of oxidation and the danger of fire (the element is pyrophoric).Molybdenum is ductile and work-hardening, so it can produce poor surface finish. Sharp tools are necessary.Nickel-based alloys are work-hardening, abrasive, and strong at high temperatures. Their machinability is similar to that of stainless steels.Tantalum is very work-hardening, ductile, and soft. It produces a poor surface finish; tool wear is high.Titanium and its alloys have poor thermal conductivity (indeed, the lowest of all metals), causing significant temperature rise and built-up edge; they can be difficult to machine.Tungsten is brittle, strong, and very abrasive, so its machinability is low, although it greatly improves at elevated temperatures.Zirconium has good machinability. It requires a coolant-type cutting fluid, however, because of the explosion and fire.20.9.3 Machinability of Various MaterialsGraphite is abrasive; it requires hard, abrasion-resistant, sharp tools.Thermoplastics generally have low thermal conductivity, low elastic modulus, and low softening temperature. Consequently, machining them requires tools with positive rake angles (to reduce cutting forces), large relief angles, small depths of cut and feed, relatively high speeds, and proper support of the workpiece. Tools should be sharp.External cooling of the cutting zone may be necessary to keep the chips from becoming “gummy” and sticking to the tools. Cooling can usually be achieved with a jet of air, vapor mist, or water-soluble oils. Residual stresses may develop during machining. To relieve these stresses, machined parts can be annealed for a period of time at temperatures ranging from to (to), and then cooled slowly and uniformly to room temperature.Thermosetting plastics are brittle and sensitive to thermal gradients during cutting. Their machinability is generally similar to that of thermoplastics.Because of the fibers present, reinforced plastics are very abrasive and are difficult to machine. Fiber tearing, pulling, and edge delamination are significant problems; they can lead to severe reduction in the load-carrying capacity of the component. Furthermore, machining of these materials requires careful removal of machining debris to avoid contact with and inhaling of the fibers.The machinability of ceramics has improved steadily with the development of nanoceramics (Section 8.2.5) and with the selection of appropriate processing parameters, such as ductile-regime cutting (Section 22.4.2).Metal-matrix and ceramic-matrix composites can be difficult to machine, depending on the properties of the individual components, i.e., reinforcing or whiskers, as well as the matrix material.20.9.4 Thermally Assisted MachiningMetals and alloys that are difficult to machine at room temperature can be machined more easily at elevated temperatures. In thermally assisted machining (hot machining), the source of heata torch, induction coil, high-energy beam (such as laser or electron beam), or plasma arcis forces, (b) increased tool life, (c) use of inexpensive cutting-tool materials, (d) higher material-removal rates, and (e) reduced tendency for vibration and chatter.It may be difficult to heat and maintain a uniform temperature distribution within the workpiece. Also, the original microstructure of the workpiece may be adversely affected by elevated temperatures. Most applications of hot machining are in the turning of high-strength metals and alloys, although experiments are in progress to machine ceramics such as silicon nitride. SUMMARYMachinability is usually defined in terms of surface finish, tool life, force and power requirements, and chip control. Machinability of materials depends not only on their intrinsic properties and microstructure, but also on proper selection and control of process variables.譯文:20.9 可機(jī)加工性一種材料的可機(jī)加工性通常以四種因素的方式定義:1、 分的表面光潔性和表面完整性。2、刀具的壽命。3、切削力和功率的需求。4、切屑控制。以這種方式,好的可機(jī)加工性指的是好的表面光潔性和完整性,長的刀具壽命,低的切削力和功率需求。關(guān)于切屑控制,細(xì)長的卷曲切屑,如果沒有被切割成小片,以在切屑區(qū)變的混亂,纏在一起的方式能夠嚴(yán)重的介入剪切工序。因?yàn)榧羟泄ば虻膹?fù)雜屬性,所以很難建立定量地釋義材料的可機(jī)加工性的關(guān)系。在制造廠里,刀具壽命和表面粗糙度通常被認(rèn)為是可機(jī)加工性中最重要的因素。盡管已不再大量的被使用,近乎準(zhǔn)確的機(jī)加工率在以下的例子中能夠被看到。20.9.1 鋼的可機(jī)加工性因?yàn)殇撌亲钪匾墓こ滩牧现唬ㄕ绲?章所示),所以他們的可機(jī)加工性已經(jīng)被廣泛地研究過。通過宗教鉛和硫磺,鋼的可機(jī)加工性已經(jīng)大大地提高了。從而得到了所謂的易切削鋼。二次硫化鋼和二次磷化鋼 硫在鋼中形成硫化錳夾雜物(第二相粒子),這些夾雜物在第一剪切區(qū)引起應(yīng)力。其結(jié)果是使切屑容易斷開而變小,從而改善了可加工性。這些夾雜物的大小、形狀、分布和集中程度顯著的影響可加工性?;瘜W(xué)元素如碲和硒,其化學(xué)性質(zhì)與硫類似,在二次硫化鋼中起夾雜物改性作用。鋼中的磷有兩個(gè)主要的影響。它加強(qiáng)鐵素體,增加硬度。越硬的鋼,形成更好的切屑形成和表面光潔性。需要注意的是軟鋼不適合用于有積屑瘤形成和很差的表面光潔性的機(jī)器。第二個(gè)影響是增加的硬度引起短切屑而不是不斷的細(xì)長的切屑的形成,因此提高可加工性。含鉛的鋼 鋼中高含量的鉛在硫化錳夾雜物尖端析出。在非二次硫化鋼中,鉛呈細(xì)小而分散的顆粒。鉛在鐵、銅、鋁和它們的合金中是不能溶解的。因?yàn)樗牡涂辜魪?qiáng)度。因此,鉛充當(dāng)固體潤滑劑并且在切削時(shí),被涂在刀具和切屑的接口處。這一特性已經(jīng)被在機(jī)加工鉛鋼時(shí),在切屑的刀具面表面有高濃度的鉛的存在所證實(shí)。當(dāng)溫度足夠高時(shí)例如,在高的切削速度和進(jìn)刀速度下鉛在刀具前直接熔化,并且充當(dāng)液體潤滑劑。除了這個(gè)作用,鉛降低第一剪切區(qū)中的剪應(yīng)力,減小切削力和功率消耗。鉛能用于各種鋼號(hào),例如10XX,11XX,12XX,41XX等等。鉛鋼被第二和第三數(shù)碼中的字母L所識(shí)別(例如,10L45)。(需要注意的是在不銹鋼中,字母L的相同用法指的是低碳,提高它們的耐蝕性的條件)。然而,因?yàn)殂U是有名的毒素和污染物,因此在鋼的使用中存在著嚴(yán)重的環(huán)境隱患(在鋼產(chǎn)品中每年大約有4500噸的鉛消耗)。結(jié)果,對(duì)于估算鋼中含鉛量的使用存在一個(gè)持續(xù)的趨勢(shì)。鉍和錫現(xiàn)正作為鋼中的鉛最可能的替代物而被人們所研究。脫氧鈣鋼 一個(gè)重要的發(fā)展是脫氧鈣鋼,在脫氧鈣鋼中矽酸鈣鹽中的氧化物片的形成。這些片狀,依次減小第二剪切區(qū)中的力量,降低刀具和切屑接口處的摩擦和磨損。溫度也相應(yīng)地降低。結(jié)果,這些鋼產(chǎn)生更小的月牙洼磨損,特別是在高切削速度時(shí)更是如此。不銹鋼 奧氏體鋼通常很難機(jī)加工。振動(dòng)能成為一個(gè)問題,需要有高硬度的機(jī)床。然而,鐵素體不銹鋼有很好的可機(jī)加工性。馬氏體鋼易磨蝕,易于形成積屑瘤,并且要求刀具材料有高的熱硬度和耐月牙洼磨損性。經(jīng)沉淀硬化的不銹鋼強(qiáng)度高、磨蝕性強(qiáng),因此要求刀具材料硬而耐磨。鋼中其它元素在可機(jī)加工性方面的影響 鋼中鋁和矽的存在總是有害的,因?yàn)檫@些元素結(jié)合氧會(huì)生成氧化鋁和矽酸鹽,而氧化鋁和矽酸鹽硬且具有磨蝕性。這些化合物增加刀具磨損,降低可機(jī)加工性。因此生產(chǎn)和使用凈化鋼非常必要。根據(jù)它們的構(gòu)成,碳和錳鋼在鋼的可機(jī)加工性方面有不同的影響。低碳素鋼(少于0.15%的碳)通過形成一個(gè)積屑瘤能生成很差的表面光潔性。盡管鑄鋼的可機(jī)加工性和鍛鋼的大致相同,但鑄鋼具有更大的磨蝕性。刀具和模具鋼很難用于機(jī)加工,他們通常再煅燒后再機(jī)加工。大多數(shù)鋼的可機(jī)加工性在冷加工后都有所提高,冷加工能使材料變硬并且減少積屑瘤的形成。其它合金元素,例如鎳、鉻、鉗和釩,能提高鋼的特性,減小可機(jī)加工性。硼的影響可以忽視。氣態(tài)元素比如氫和氮在鋼的特性方面能有特別的有害影響。氧已經(jīng)被證明了在硫化錳夾雜物的縱橫比方面有很強(qiáng)的影響。越高的含氧量,就產(chǎn)生越低的縱橫比和越高的可機(jī)加工性。選擇各種元素以改善可加工性,我們應(yīng)該考慮到這些元素對(duì)已加工零件在使用中的性能和強(qiáng)度的不利影響。例如,當(dāng)溫度升高時(shí),鋁會(huì)使鋼變脆(液體金屬脆化,熱脆化,見1.4.3節(jié)),盡管其在室溫下對(duì)力學(xué)性能沒有影響。因?yàn)榱蚧F的構(gòu)成,硫能嚴(yán)重的減少鋼的熱加工性,除非有足夠的錳來防止這種結(jié)構(gòu)的形成。在室溫下,二次磷化鋼的機(jī)械性能依賴于變形的硫化錳夾雜物的定位(各向異性)。二次磷化鋼具有更小的延展性,被單獨(dú)生成來提高機(jī)加工性。20.9.2 其它不同金屬的機(jī)加工性盡管越軟的品種易于生成積屑瘤,但鋁通常很容易被機(jī)加工,導(dǎo)致了很差的表面光潔性。高的切削速度,高的前角和高的后角都被推薦了。有高含量的矽的鍛鋁合金鑄鋁合金也許具有磨蝕性,它們要求更硬的刀具材料。尺寸公差控制也許在機(jī)加工鋁時(shí)會(huì)成為一個(gè)問題,因?yàn)樗信蛎浀母邔?dǎo)熱系數(shù)和相對(duì)低的彈性模數(shù)。鈹和鑄鐵相同。因?yàn)樗吣ノg性和毒性,盡管它要求在可控人工環(huán)境下進(jìn)行機(jī)加工?;诣T鐵普遍地可加工,但也有磨蝕性。鑄造無中的游離碳化物降低它們的可機(jī)加工性,引起刀具切屑或裂口。它需要具有強(qiáng)韌性的工具。具有堅(jiān)硬的刀具材料的球墨鑄鐵和韌性鐵是可加工的。鈷基合金有磨蝕性且高度加工硬化的。它們要求尖的且具有耐蝕性的刀具材料并且有低的走刀和速度。盡管鑄銅合金很容易機(jī)加工,但因?yàn)殄戙~的積屑瘤形成因而鍛銅很難機(jī)加工。黃銅很容易機(jī)加工,特別是有添加的鉛更容易。青銅比黃銅更難機(jī)加工。鎂很容易機(jī)加工,鎂既有很好的表面光潔性和長久的刀具壽命。然而,因?yàn)楦叩难趸俣群突鸱N的危險(xiǎn)(這種元素易燃),因此我們應(yīng)該特別小心使用它。鉗易拉長且加工硬化,因此它生成很差的表面光潔性。尖的刀具是很必要的。鎳基合金加工硬化,具有磨蝕性,且在高溫下非常堅(jiān)硬。它的可機(jī)加工性和不銹鋼相同。鉭非常的加工硬化,具有可延性且柔軟。它生成很差的表面光潔性且刀具磨損非常大。鈦和它的合金導(dǎo)熱性(的確,是所有金屬中最低的),因此引起明顯的溫度升高和積屑瘤。它們是難機(jī)加工的。鎢易脆,堅(jiān)硬,且具有磨蝕性,因此盡管它的性能在高溫下能大大提高,但它的機(jī)加工性仍很低。鋯有很好的機(jī)加工性。然而,因?yàn)橛斜ê突鸱N的危險(xiǎn)性,它要求有一個(gè)冷卻性質(zhì)好的切削液。20.9.3 各種材料的機(jī)加工性石墨具有磨蝕性。它要求硬的、尖的,具有耐蝕性的刀具。塑性塑料通常有低的導(dǎo)熱性,低的彈性模數(shù)和低的軟化溫度。因此,機(jī)加工熱塑性塑料要求有正前角的刀具(以此降低切削力),還要求有大的后角,小的切削和走刀深的,相對(duì)高的速度和工件的正確支承。刀具應(yīng)該很尖。切削區(qū)的外部冷卻也許很必要,以此來防止切屑變的有黏性且粘在刀具上。有了空氣流,汽霧或水溶性油,通常就能實(shí)現(xiàn)冷卻。在機(jī)加工時(shí),殘余應(yīng)力也許能生成并發(fā)展。為了解除這些力,已機(jī)加工的部分要在()的溫度范圍內(nèi)冷卻一段時(shí)間,然而慢慢地?zé)o變化地冷卻到室溫。熱固性塑料易脆,并且在切削時(shí)對(duì)熱梯度很敏感。它的機(jī)加工性和熱塑性塑料的相同。因?yàn)槔w維的存在,加強(qiáng)塑料具有磨蝕性,且很難機(jī)加工。纖維的撕裂、拉出和邊界分層是非常嚴(yán)重的問題。它們能導(dǎo)致構(gòu)成要素的承載能力大大下降。而且,這些材料的機(jī)加工要求對(duì)加工殘片仔細(xì)切除,以此來避免接觸和吸進(jìn)纖維。隨著納米陶瓷(見8.2.5節(jié))的發(fā)展和適當(dāng)?shù)膮?shù)處理的選擇,例如塑性切削(見22.4.2節(jié)),陶瓷器的可機(jī)加工性已大大地提高了。金屬基復(fù)合材料和陶瓷基復(fù)合材料很能機(jī)加工,它們依賴于單獨(dú)的成分的特性,比如說增強(qiáng)纖維或金屬須和基體材料。20.9.4 熱輔助加工在室溫下很難機(jī)加工的金屬和合金在高溫下能更容易地機(jī)加工。在熱輔助加工時(shí)(高溫切削),熱源一個(gè)火把,感應(yīng)線圈,高能束流(例如雷射或電子束),或等離子弧被集中在切削刀具前的一塊區(qū)域內(nèi)。好處是:(a)低的切削力。(b)增加的刀具壽命。(c)便宜的切削刀具材料的使用。(d)更高的材料切除率。(e)減少振動(dòng)。也許很難在工件內(nèi)加熱和保持一個(gè)不變的溫度分布。而且,工件的最初微觀結(jié)構(gòu)也許被高溫影響,且這種影響是相當(dāng)有害的。盡管實(shí)驗(yàn)在進(jìn)行中,以此來機(jī)加工陶瓷器如氮化矽,但高溫切削仍大多數(shù)應(yīng)用在高強(qiáng)度金屬和高溫度合金的車削中。小結(jié)通常,零件的可機(jī)加工性能是根據(jù)以下因素來定義的:表面粗糙度,刀具的壽命,切削力和功率的需求以及切屑的控制。材料的可機(jī)加工性能不僅取決于起內(nèi)在特性和微觀結(jié)構(gòu),而且也依賴于工藝參數(shù)的適當(dāng)選擇與控制。
收藏