(全國通用版)2022-2023高中數(shù)學(xué) 第一章 常用邏輯用語 1.4.3 含有一個(gè)量詞的命題的否定學(xué)案 新人教A版選修2-1
《(全國通用版)2022-2023高中數(shù)學(xué) 第一章 常用邏輯用語 1.4.3 含有一個(gè)量詞的命題的否定學(xué)案 新人教A版選修2-1》由會(huì)員分享,可在線閱讀,更多相關(guān)《(全國通用版)2022-2023高中數(shù)學(xué) 第一章 常用邏輯用語 1.4.3 含有一個(gè)量詞的命題的否定學(xué)案 新人教A版選修2-1(10頁珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
1、(全國通用版)2022-2023高中數(shù)學(xué) 第一章 常用邏輯用語 1.4.3 含有一個(gè)量詞的命題的否定學(xué)案 新人教A版選修2-1 學(xué)習(xí)目標(biāo) 1.理解含有一個(gè)量詞的命題的否定的意義.2.會(huì)對(duì)含有一個(gè)量詞的命題進(jìn)行否定.3.掌握全稱命題的否定是特稱命題,特稱命題的否定是全稱命題. 知識(shí)點(diǎn)一 全稱命題的否定 思考 嘗試寫出下面含有一個(gè)量詞的全稱命題的否定,并歸納寫全稱命題否定的方法. (1)所有矩形都是平行四邊形; (2)每一個(gè)素?cái)?shù)都是奇數(shù); (3)?x∈R,x2-2x+1≥0. 答案 (1)將量詞“所有”換為:“存在一個(gè)”然后將結(jié)論否定,即“不是平行四邊形”,所以原命題的否定為:“
2、存在一個(gè)矩形不是平行四邊形”;用同樣的方法可得(2)(3)的否定: (2)存在一個(gè)素?cái)?shù)不是奇數(shù); (3)?x0∈R,x-2x0+1<0. 梳理 寫全稱命題的否定的方法:(1)更換量詞,將全稱量詞換為存在量詞;(2)將結(jié)論否定. 對(duì)于含有一個(gè)量詞的全稱命題的否定,有下面的結(jié)論:全稱命題p:?x∈M,p(x),它的否定綈p:?x0∈M,綈p(x0). 全稱命題的否定是特稱命題. 知識(shí)點(diǎn)二 特稱命題的否定 思考 嘗試寫出下面含有一個(gè)量詞的特稱命題的否定,并歸納寫特稱命題否定的方法. (1)有些實(shí)數(shù)的絕對(duì)值是正數(shù); (2)某些平行四邊形是菱形; (3)?x0∈R,x+1<0. 答
3、案 (1)先將存在量詞“有些”改寫為全稱量詞“所有”,然后將結(jié)論“實(shí)數(shù)的絕對(duì)值是正數(shù)”否定,即“實(shí)數(shù)的絕對(duì)值不是正數(shù),于是得原命題的否定為:“所有實(shí)數(shù)的絕對(duì)值都不是正數(shù)”;同理可得(2)(3)的否定: (2)所有平行四邊形都不是菱形; (3)?x∈R,x2+1≥0. 梳理 寫特稱命題的否定的方法:(1)將存在量詞改寫為全稱量詞,(2)將結(jié)論否定. 對(duì)于含一個(gè)量詞的特稱命題的否定,有下面的結(jié)論: 特稱命題p:?x0∈M,p(x0),它的否定綈p:?x∈M,綈p(x).特稱命題的否定是全稱命題. (1)命題綈p的否定為p.(√) (2)?x0∈M,p(x0)與?x∈M,綈p(x)
4、的真假性相反.(√) (3)從特稱命題的否定看,是對(duì)“量詞”和“p(x)”同時(shí)否定.(×) 類型一 全稱命題的否定 例1 寫出下列全稱命題的否定: (1)任何一個(gè)平行四邊形的對(duì)邊都平行; (2)數(shù)列:1,2,3,4,5中的每一項(xiàng)都是偶數(shù); (3)?a,b∈R,方程ax=b都有唯一解; (4)可以被5整除的整數(shù),末位是0. 考點(diǎn) 全稱量詞的否定 題點(diǎn) 含全稱量詞的命題的否定 解 (1)其否定:存在一個(gè)平行四邊形,它的對(duì)邊不都平行. (2)其否定:數(shù)列:1,2,3,4,5中至少有一項(xiàng)不是偶數(shù). (3)其否定:?a,b∈R,使方程ax=b的解不唯一或不存在. (4)其否
5、定:存在被5整除的整數(shù),末位不是0. 反思與感悟 全稱命題的否定是特稱命題,對(duì)省略全稱量詞的全稱命題可補(bǔ)上量詞后進(jìn)行否定. 跟蹤訓(xùn)練1 寫出下列全稱命題的否定: (1)p:每一個(gè)四邊形的四個(gè)頂點(diǎn)共圓; (2)p:所有自然數(shù)的平方都是正數(shù); (3)p:任何實(shí)數(shù)x都是方程5x-12=0的根; (4)p:對(duì)任意實(shí)數(shù)x,x2+1≥0. 考點(diǎn) 全稱量詞的否定 題點(diǎn) 含全稱量詞的命題的否定 解 (1)綈p:存在一個(gè)四邊形,它的四個(gè)頂點(diǎn)不共圓. (2)綈p:有些自然數(shù)的平方不是正數(shù). (3)綈p:存在實(shí)數(shù)x0不是方程5x0-12=0的根. (4)綈p:存在實(shí)數(shù)x0,使得x+1<0.
6、 類型二 特稱命題的否定 例2 寫出下列特稱命題的否定,并判斷其真假. (1)p:?x0∈R,2x0+1≥0; (2)q:?x0∈R,x-x0+<0; (3)r:有些分?jǐn)?shù)不是有理數(shù). 考點(diǎn) 存在量詞的否定 題點(diǎn) 含存在量詞的命題的否定 解 (1)綈p:?x∈R,2x+1<0,綈p為假命題. (2)綈q:?x∈R,x2-x+≥0. ∵x2-x+=2≥0,∴綈q是真命題. (3)綈r:一切分?jǐn)?shù)都是有理數(shù),綈r是真命題. 反思與感悟 特稱命題的否定是全稱命題,寫命題的否定時(shí)要分別改變其中的量詞和判斷詞.即p:?x0∈M,p(x0)成立?綈p:?x∈M,綈p(x)成立. 跟蹤訓(xùn)
7、練2 寫出下列特稱命題的否定,并判斷其否定的真假. (1)有些實(shí)數(shù)的絕對(duì)值是正數(shù); (2)某些平行四邊形是菱形; (3)?x0,y0∈Z,使得x0+y0=3. 考點(diǎn) 存在量詞的否定 題點(diǎn) 含存在量詞的命題的否定 解 (1)命題的否定是“不存在一個(gè)實(shí)數(shù),它的絕對(duì)值是正數(shù)”,即“所有實(shí)數(shù)的絕對(duì)值都不是正數(shù)”.它為假命題. (2)命題的否定是“沒有一個(gè)平行四邊形是菱形”,即“每一個(gè)平行四邊形都不是菱形”.由于菱形是平行四邊形,因此命題的否定是假命題. (3)命題的否定是“?x,y∈Z,x+y≠3”.當(dāng)x=0,y=3時(shí),x+y=3,因此命題的否定是假命題. 類型三 含量詞的命題的應(yīng)用
8、 例3 已知命題“對(duì)于任意x∈R,x2+ax+1≥0”是假命題,求實(shí)數(shù)a的取值范圍. 考點(diǎn) 含有一個(gè)量詞的命題 題點(diǎn) 由含有一個(gè)量詞的命題的真假求參數(shù)的取值范圍 解 因?yàn)槿Q命題“對(duì)于任意x∈R,x2+ax+1≥0”的否定形式為:“存在x0∈R,x+ax0+1<0”. 由“命題真,其否定假;命題假,其否定真”可知,這個(gè)否定形式的命題是真命題. 由于函數(shù)f(x)=x2+ax+1是開口向上的拋物線, 借助二次函數(shù)的圖象易知:Δ=a2-4>0, 解得a<-2或a>2. 所以實(shí)數(shù)a的取值范圍是(-∞,-2)∪(2,+∞). 引申探究 把本例中“假命題”改為“真命題”,求實(shí)數(shù)a的取
9、值范圍. 解 由題意知Δ=a2-4≤0,解得a∈[-2,2]. 故a的取值范圍為[-2,2]. 反思與感悟 含有一個(gè)量詞的命題與參數(shù)范圍的求解策略 (1)對(duì)于全稱命題“?x∈M,a>f(x)(或a<f(x))”為真的問題,實(shí)質(zhì)就是不等式恒成立問題,通常轉(zhuǎn)化為求函數(shù)f(x)的最大值(或最小值),即a>f(x)max(a<f(x)min). (2)對(duì)于特稱命題“?x0∈M,a>f(x0)(或a<f(x0))”為真的問題,實(shí)質(zhì)就是不等式能成立問題,通常轉(zhuǎn)化為求函數(shù)f(x)的最小值(或最大值),即a>f(x)min(或a<f(x)max). (3)若全稱命題為假命題,通常轉(zhuǎn)化為其否定形式—
10、—特稱命題為真命題解決,同理,若特稱命題為假命題,通常轉(zhuǎn)化為其否定形式——全稱命題為真命題解決. 跟蹤訓(xùn)練3 已知函數(shù)f(x)=x2-2x+5. (1)是否存在實(shí)數(shù)m,使不等式m+f(x)>0對(duì)于任意x∈R恒成立,并說明理由; (2)若存在一個(gè)實(shí)數(shù)x0,使不等式m-f(x0)>0成立,求實(shí)數(shù)m的取值范圍. 考點(diǎn) 含有一個(gè)量詞的命題 題點(diǎn) 由含有一個(gè)量詞的命題的真假求參數(shù)的取值范圍 解 (1)不等式m+f(x)>0可化為m>-f(x), 即m>-x2+2x-5=-(x-1)2-4. 要使m>-(x-1)2-4對(duì)于任意x∈R恒成立,只需m>-4即可. 故存在實(shí)數(shù)m,使不等式m+f
11、(x)>0對(duì)于任意x∈R恒成立,此時(shí),只需m>-4. (2)不等式m-f(x0)>0可化為m>f(x0),若存在一個(gè)實(shí)數(shù)x0,使不等式m>f(x0)成立,只需m>f(x)min. 又f(x)=(x-1)2+4,∴f(x)min=4,∴m>4. ∴所求實(shí)數(shù)m的取值范圍是(4,+∞). 1.命題“?x∈R,|x|+x2≥0”的否定是( ) A.?x∈R,|x|+x2<0 B.?x∈R,|x|+x2≤0 C.?x0∈R,|x0|+x<0 D.?x0∈R,|x0|+x≥0 考點(diǎn) 全稱量詞的否定 題點(diǎn) 含全稱量詞的命題的否定 答案 C 2.?m0,n0∈Z,使得m=n+
12、2 017的否定是( ) A.?m,n∈Z,使得m2=n2+2 017 B.?m0,n0∈Z,使得m≠n+2 017 C.?m,n∈Z,有m2≠n2+2 017 D.以上都不對(duì) 考點(diǎn) 存在量詞的否定 題點(diǎn) 含存在量詞的命題的否定 答案 C 3.命題“?x∈R,x>sin x”的否定是________________. 考點(diǎn) 全稱量詞的否定 題點(diǎn) 含全稱量詞的命題的否定 答案 ?x0∈R,x0≤sin x0 4.由命題“存在x0∈R,使-m≤0”是假命題,得m的取值范圍是(-∞,a),則實(shí)數(shù)a的值是________. 考點(diǎn) 含有一個(gè)量詞的命題 題點(diǎn) 含一個(gè)量詞的命題
13、的否定 答案 1 解析 其否定為:?x∈R,使e|x-1|-m>0, 且為真命題.m<e|x-1|. 只需m<(e|x-1|)min=1.故a=1. 5.寫出下列命題的否定,并判斷其真假. (1)?x0∈R,x+2x0+2=0; (2)p:所有的正方形都是菱形; (3)p:至少有一個(gè)實(shí)數(shù)x0,使x+1=0. 考點(diǎn) 含有一個(gè)量詞的命題 題點(diǎn) 含一個(gè)量詞的命題的否定 解 (1)綈p:?x∈R,x2+2x+2≠0,真命題. 由為?x∈R,x2+2x+2=(x+1)2+1>0恒成立. (2)綈p:至少存在一個(gè)正方形不是菱形,假命題. 因?yàn)樗械恼叫味际橇庑危? (3)綈p
14、:?x∈R,x3+1≠0,假命題. 因?yàn)楫?dāng)x=-1時(shí),x3+1=0. 1.對(duì)含有全稱量詞的命題進(jìn)行否定需兩步操作:第一步,將全稱量詞改寫成存在量詞,即將“任意”改為“存在”;第二步,將結(jié)論加以否定,如:將“≥”否定為“<”. 2.對(duì)含有存在量詞的命題進(jìn)行否定需兩步操作:第一步,將存在量詞改寫成全稱量詞;第二步,將結(jié)論加以否定.含有存在量詞的命題的否定是含有全稱量詞的命題.注意命題中可能省略了全稱或存在意義的量詞,要注意判斷. 一、選擇題 1.下列命題中,真命題的個(gè)數(shù)是( ) ①存在實(shí)數(shù)x0,使得x+2=0;②有些角的正弦值大于1;③有
15、些函數(shù)既是奇函數(shù)又是偶函數(shù). A.0 B.1 C.2 D.3 考點(diǎn) 含有一個(gè)量詞的命題 題點(diǎn) 含一個(gè)量詞的命題真假判斷 答案 B 解析 x2+2≥2,故①是假命題;?x∈R,|sin x|≤1,故②是假命題;f(x)=0既是奇函數(shù)又是偶函數(shù),所以③是真命題.故選B. 2.命題“對(duì)任意的x∈R,x3-x2+1≤0”的否定是( ) A.存在x0∈R,x-x+1≤0 B.存在x0∈R,x-x+1≥0 C.存在x0∈R,x-x+1>0 D.對(duì)任意的x∈R,x3-x2+1>0 考點(diǎn) 全稱量詞的否定 題點(diǎn) 含全稱量詞的命題的否定 答案 C 解析 由題意知,原命題為全稱命
16、題,故其否定為特稱命題,所以否定為“存在x0∈R,x-x+1>0”.故選C. 3.已知命題p:存在a∈(-∞,0),a2-2a-3>0,那么命題p的否定是( ) A.存在a∈(0,+∞),a2-2a-3≤0 B.存在a∈(-∞,0),a2-2a-3≤0 C.對(duì)任意a∈(0,+∞),a2-2a-3≤0 D.對(duì)任意a∈(-∞,0),a2-2a-3≤0 考點(diǎn) 存在量詞的否定 題點(diǎn) 含存在量詞的命題的否定 答案 D 解析 易知綈p:對(duì)任意a∈(-∞,0),a2-2a-3≤0,故選D. 4.已知p:?x∈R,ax2+2x+3>0,如果p是假命題,那么a的取值范圍是( ) A.a(chǎn)
17、< B.0<a≤ C.a(chǎn)≤ D.a(chǎn)≥ 考點(diǎn) 全稱量詞的否定 題點(diǎn) 含全稱量詞的命題的真假求參數(shù)的取值范圍 答案 C 解析 易知綈p:?x0∈R,ax+2x0+3≤0, 顯然當(dāng)a=0時(shí),滿足題意; 當(dāng)a>0時(shí),由Δ≥0,得0<a≤; 當(dāng)a<0時(shí),滿足題意. 所以a的取值范圍是. 5.下列命題中,假命題是( ) A.?x∈R,2x-1>0 B.?x∈N*,(x-1)2>0 C.?x0∈R,lg x0<1 D.?x0∈R,tan x0=2 考點(diǎn) 含有一個(gè)量詞的命題 題點(diǎn) 含一個(gè)量詞的命題真假判斷 答案 B 解析 對(duì)于?x∈R,y=2x>0恒成立,而y=2
18、x-1的圖象是將y=2x的圖象沿x軸向右平移1個(gè)單位長(zhǎng)度,函數(shù)的值域不變,故2x-1>0恒成立,A為真命題;當(dāng)x=1時(shí),(x-1)2=0,故B為假命題;當(dāng)0
19、稱量詞的否定 題點(diǎn) 含全稱量詞的命題的否定 答案 D 解析 “f(n)∈N*且f(n)≤n”的否定為“f(n)?N*或f(n)>n”,全稱命題的否定為特稱命題,故選D. 7.已知a>0,函數(shù)f(x)=ax2+bx+c,若x0滿足關(guān)于x的方程2ax+b=0,則下列選項(xiàng)中的命題為假命題的是( ) A.?x1∈R,f(x1)≤f(x0) B.?x1∈R,f(x1)≥f(x0) C.?x∈R,f(x)≤f(x0) D.?x∈R,f(x)≥f(x0) 考點(diǎn) 含有一個(gè)量詞的命題 題點(diǎn) 含一個(gè)量詞的命題真假判斷 答案 C 解析 當(dāng)a>0時(shí),函數(shù)f(x)=ax2+bx+c的圖象為
20、開口向上的拋物線,若x0滿足關(guān)于x的方程2ax+b=0,則x0=-為拋物線頂點(diǎn)的橫坐標(biāo),f(x)min=f(x0),故對(duì)于?x∈R,f(x)≥f(x0)成立,從而選項(xiàng)A,B,D為真命題,選項(xiàng)C為假命題. 二、填空題 8.“若|x|+|y|=0,則x,y全為0”的否定為 . 答案 若|x|+|y|=0,則x,y不全為0 9.函數(shù)y=x+b的值隨x的增加而增加的否定為 . 答案 若x增加,則函數(shù)y=x+b的值不增加 10.設(shè)命題p:?x∈R,x2+ax+2<0,若p為假,則實(shí)數(shù)a的取值范圍是________. 考點(diǎn) 全稱量詞
21、的否定 題點(diǎn) 含全稱量詞的命題的真假求參數(shù)的取值范圍 答案 (-∞,+∞) 解析 綈p:?x0∈R,x+ax0+2≥0為真命題, 顯然a∈R. 11.命題“對(duì)任意x∈R,都有|x-2|+|x-4|>3”的否定是_________________________. 考點(diǎn) 全稱量詞的否定 題點(diǎn) 含全稱量詞的命題的否定 答案 ?x0∈R,|x0-2|+|x0-4|≤3 三、解答題 12.若命題“?x∈[-1,+∞),x2-2ax+2≥a”是真命題,求實(shí)數(shù)a的取值范圍. 考點(diǎn) 簡(jiǎn)單邏輯聯(lián)結(jié)詞的綜合應(yīng)用 題點(diǎn) 由含量詞的復(fù)合命題的真假求參數(shù)的取值范圍 解 x2-2ax+2≥a,
22、即x2-2ax+2-a≥0, 令f(x)=x2-2ax+2-a, 所以全稱命題轉(zhuǎn)化為“?x∈[-1,+∞),f(x)≥0恒成立”, 所以Δ≤0或 即-2≤a≤1或-3≤a<-2,所以-3≤a≤1. 故所求實(shí)數(shù)a的取值范圍為[-3,1]. 13.已知p:?a∈(0,b](b∈R且b>0),函數(shù)f(x)= sin的周期不大于4π. (1)寫出綈p; (2)當(dāng)p是假命題時(shí),求實(shí)數(shù)b的最大值. 考點(diǎn) 全稱量詞的否定 題點(diǎn) 全稱量詞的命題的否定 解 (1)綈p:?a0∈(0,b](b∈R且b>0), 函數(shù)f(x)=sin的周期大于4π. (2)由于綈p是假命題,所以p是真命題
23、, 所以?a∈(0,b],≤4π恒成立, 解得a≤2,所以0<b≤2,所以實(shí)數(shù)b的最大值是2. 四、探究與拓展 14.關(guān)于x的函數(shù)y=x2-(a+1)x+2a對(duì)于任意a∈[-1,1]的值都有y>0,則實(shí)數(shù)x的取值范圍為____________. 考點(diǎn) 簡(jiǎn)單邏輯聯(lián)結(jié)詞的綜合應(yīng)用 題點(diǎn) 由含量詞的復(fù)合命題的真假求參數(shù)的取值范圍 答案 (-∞,-)∪(,+∞) 解析 設(shè)f(a)=x2-(a+1)x+2a,則有f(a)=(2-x)a+x2-x,a∈[-1,1], ∵當(dāng)a∈[-1,1]時(shí),y=f(a)>0恒成立, ∴對(duì)a的系數(shù)討論如下: ①當(dāng)x=2時(shí),f(a)=2>0顯然成立;
24、②當(dāng)x≠2時(shí),由f(a)>0,a∈[-1,1]恒成立,得 即 解得x>或x<-. 綜上可得,x的取值范圍為(-∞,-)∪(,+∞). 15.給出兩個(gè)命題,命題甲:關(guān)于x的不等式x2+(a-1)x+a2≤0的解集為?,命題乙:函數(shù)y=(2a2-a)x為增函數(shù),分別求出符合下列條件的實(shí)數(shù)a的取值范圍. (1)甲、乙中至少有一個(gè)是真命題; (2)甲、乙中有且只有一個(gè)真命題. 考點(diǎn) 簡(jiǎn)單邏輯聯(lián)結(jié)詞的綜合應(yīng)用 題點(diǎn) 由含量詞的復(fù)合命題的真假求參數(shù)的取值范圍 解 當(dāng)甲命題為真時(shí),Δ=(a-1)2-4a2<0, 解得a>或a<-1. 當(dāng)乙命題為真時(shí),2a2-a>1,解得 a>1或a<-. (1)甲、乙中至少有一個(gè)是真命題時(shí), a的取值范圍是∪. (2)甲、乙有且只有一個(gè)是真命題,有兩種情況: 當(dāng)甲真乙假時(shí),a的取值范圍是; 當(dāng)甲假乙真時(shí),a的取值范圍是, 故a的取值范圍為∪.
- 溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 第七章-透射電子顯微鏡
- 群落的結(jié)構(gòu)(課件)
- 焊接基礎(chǔ)知識(shí)
- 水文地質(zhì)學(xué)課件
- 某公司員工工傷安全管理規(guī)定
- 消防培訓(xùn)課件:安全檢修(要點(diǎn))
- 某公司安全生產(chǎn)考核與獎(jiǎng)懲辦法范文
- 安全作業(yè)活動(dòng)安全排查表
- 某公司危險(xiǎn)源安全辨識(shí)、分類和風(fēng)險(xiǎn)評(píng)價(jià)、分級(jí)辦法
- 某公司消防安全常識(shí)培訓(xùn)資料
- 安全培訓(xùn)資料:危險(xiǎn)化學(xué)品的類別
- 中小學(xué)寒假學(xué)習(xí)計(jì)劃快樂度寒假充實(shí)促成長(zhǎng)
- 紅色插畫風(fēng)輸血相關(guān)知識(shí)培訓(xùn)臨床輸血流程常見輸血不良反應(yīng)
- 14.應(yīng)急救援隊(duì)伍訓(xùn)練記錄
- 某公司各部門及人員安全生產(chǎn)責(zé)任制