《【創(chuàng)新方案】高考數(shù)學(xué)理一輪知能檢測(cè):第3章 第4節(jié) 函數(shù)y=asin(ωx+φ)的圖象及3角函數(shù)模型的簡(jiǎn)單應(yīng)用數(shù)學(xué)大師 為您收集整理》由會(huì)員分享,可在線閱讀,更多相關(guān)《【創(chuàng)新方案】高考數(shù)學(xué)理一輪知能檢測(cè):第3章 第4節(jié) 函數(shù)y=asin(ωx+φ)的圖象及3角函數(shù)模型的簡(jiǎn)單應(yīng)用數(shù)學(xué)大師 為您收集整理(7頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
1、第四節(jié)函數(shù)y=Asin(ωx+φ)的圖象及三角函數(shù)模型的簡(jiǎn)單應(yīng)用
[全盤鞏固]
1.(2014·煙臺(tái)模擬)如圖是函數(shù)y=Asin(ωx+φ)在一個(gè)周期內(nèi)的圖象,此函數(shù)的解析式可為( )
A.y=2sin B.y=2sin
C.y=2sin D.y=2sin
解析:選B 由題圖可知A=2,=-=,∴T=π,ω=2,∴f(x)=2sin(2x+φ),
又f=2sin=2,即-+φ=+2kπ,k∈Z,∴φ=+2kπ(k∈Z),結(jié)合選項(xiàng)知選B.
2.(2014·海淀模擬)設(shè)函數(shù)f(x)=cos ωx(ω>0)
2、,將y=f(x)的圖象向右平移個(gè)單位長(zhǎng)度后,所得的圖象與原圖象重合,則ω的最小值等于( )
A. B.3 C.6 D.9
解析:選C 將f(x)的圖象向右平移個(gè)單位長(zhǎng)度得g(x)=cos=cos,則-ω=2kπ(k∈Z),即ω=-6k(k∈Z).∵ω>0,∴k<0.∴當(dāng)k=-1時(shí),ω有最小值6.
3.把函數(shù)y=cos 2x+1的圖象上所有點(diǎn)的橫坐標(biāo)伸長(zhǎng)到原來(lái)的2倍(縱坐標(biāo)不變),然后向左平移1個(gè)單位長(zhǎng)度,再向下平移1個(gè)單位長(zhǎng)度,得到的圖象是( )
解析:選A 把函數(shù)y=cos 2x+1的圖象上所有點(diǎn)的橫坐標(biāo)伸長(zhǎng)到原來(lái)的2倍(縱坐標(biāo)不變),得到函
3、數(shù)y=cos x+1的圖象,然后把所得函數(shù)圖象向左平移1個(gè)單位長(zhǎng)度,再向下平移1個(gè)單位長(zhǎng)度,得到函數(shù)y=cos(x+1)的圖象,故選A.
4. 如圖所示,為了研究鐘表與三角函數(shù)的關(guān)系,建立如圖所示的坐標(biāo)系,設(shè)秒針尖位置P(x,y).若初始位置為P0,當(dāng)秒針從P0(注:此時(shí)t=0)正常開(kāi)始走時(shí),那么點(diǎn)P的縱坐標(biāo)y與時(shí)間t的函數(shù)關(guān)系為( )
A.y=sin B.y=sin
C.y=sin D.y=sin
解析:選C 由題意可得,函數(shù)的初相位是,排除B、D.又函數(shù)周期是60秒且秒針按順時(shí)針旋轉(zhuǎn),即T==60,所以|ω|=,即ω=-,故y=sin.
5.將函
4、數(shù)y=sin圖象上所有點(diǎn)的橫坐標(biāo)縮短到原來(lái)的倍(縱坐標(biāo)不變),再把所得圖象向右平移個(gè)單位長(zhǎng)度后得到函數(shù)y=f(x)的圖象,則函數(shù)y=f(x)的圖象( )
A.關(guān)于點(diǎn)(0,0)對(duì)稱 B.關(guān)于點(diǎn)對(duì)稱
C.關(guān)于直線x=對(duì)稱 D.關(guān)于直線x=π對(duì)稱
解析:選C 將函數(shù)y=sin圖象上所有點(diǎn)的橫坐標(biāo)縮短到原來(lái)的倍(縱坐標(biāo)不變),得到y(tǒng)=sin,再把所得圖象向右平移個(gè)單位長(zhǎng)度,得到y(tǒng)=sin=sin.當(dāng)x=時(shí),y=sin=sin =1.所以x=為其對(duì)稱軸.
6.函數(shù)y=Asin(ωx+φ)的部分圖象如圖所示,則函數(shù)的一個(gè)表達(dá)式
5、為( )
A.y=-4sin B.y=4sin
C. y=-4sin D.y=4sin
解析:選A 根據(jù)正弦函數(shù)y=Asin(ωx+φ)ω>0,|φ|≤的圖象的性質(zhì)可得T=2×|6-(-2)|=16,故ω==,又根據(jù)圖象可知f(6)=0,即Asin=0.由于|φ|≤,故只能×6+φ=π,解得φ=,即y=Asinx+,又由f(2)=-4,即Asin=-4,解得A=-4,故f(x)=-4sin.
7.函數(shù)f(x)=tan ωx(ω>0)的圖象的相鄰兩支截直線y=所得線段長(zhǎng)為,則f=________.
解析:依題意=,∴ω=4.∴f(x
6、)=tan 4x.∴f=tan π=0.
答案:0
8.若將函數(shù)y=sin(ω>0)的圖象向右平移個(gè)單位長(zhǎng)度后,與函數(shù)y=sin的圖象重合,則ω的最小值為_(kāi)_______.
解析:y=sin=sin,y=sin=sin,
由題意知,當(dāng)-=時(shí),ω最小,解得ω=.
答案:
9.已知函數(shù)f(x)=Mcos(ωx+φ)(M>0,ω>0,0<φ<π)為奇函數(shù),該函數(shù)的部分圖象如圖所示,AC=BC=,C=90°,則f的值為_(kāi)_______.
解析:依題意知,△ABC是直角邊長(zhǎng)為的等腰直角三角形,因此其邊AB上的高是,函數(shù)f(x)的最小正周期是2,故M=,=2,ω=π,f(x)=
7、cos(πx+φ).又函數(shù)f(x)是奇函數(shù),于是有φ=kπ+,其中k∈Z.由0<φ<π,得φ=,故f(x)=-sin πx,f=-sin =-.
答案:-
10.(2013·安徽高考)設(shè)函數(shù)f(x)=sin x+sin.
(1)求f(x)的最小值,并求使f(x)取得最小值的x的集合;
(2)不畫圖,說(shuō)明函數(shù)y=f(x)的圖象可由y=sin x的圖象經(jīng)過(guò)怎樣的變化得到.
解:(1)因?yàn)閒(x)=sin x+sin x+cos x=sin x+cos x=sin,
所以當(dāng)x+=2kπ-,k∈Z,即x=2kπ-,k∈Z時(shí),f(x)取最小值-.
此時(shí)x的取值集合為xx=2kπ-
8、,k∈Z.
(2)先將y=sin x的圖象上所有點(diǎn)的縱坐標(biāo)伸長(zhǎng)到原來(lái)的倍(橫坐標(biāo)不變),得y=sin x的圖象;再將y=sin x的圖象上所有的點(diǎn)向左平移個(gè)單位長(zhǎng)度,得y=f(x)的圖象.
11.設(shè)x∈R,函數(shù)f(x)=cos(ωx+φ)的最小正周期為π,且f=.
(1)求ω和φ的值;
(2)在給定坐標(biāo)系中作出函數(shù)f(x)在[0,π]上的圖象;
(3)若f(x)>,求x的取值范圍.
解:(1)∵函數(shù)f(x)的最小正周期T==π,∴ω=2,
∵f=cos=cos=-sin φ=,且-<φ<0,∴φ=-.
(2)由(1)知f(x)=cos,列表如下:
2x-
-
0
9、
π
x
0
π
f(x)
1
0
-1
0
圖象如圖:
(3)∵f(x)>,即cos>,∴2kπ-<2x-<2kπ+,k∈Z,
則2kπ+<2x<2kπ+,k∈Z,即kπ+<x<kπ+,k∈Z.
∴x的取值范圍是.
12.已知函數(shù)f(x)=sin(ωx+φ)-cos(ωx+φ)(0<φ<π,ω>0)為偶函數(shù),且函數(shù)y=f(x)圖象的兩相鄰對(duì)稱軸間的距離為.
(1)求f的值;
(2)將函數(shù)y=f(x)的圖象向右平移個(gè)單位長(zhǎng)度后,再將得到的圖象上各點(diǎn)的橫坐標(biāo)伸長(zhǎng)為原來(lái)的4倍,縱坐標(biāo)不變,得到函數(shù)y=g(x)的圖象,求g(x)的
10、單調(diào)遞減區(qū)間.
解:(1)f(x)=sin(ωx+φ)-cos(ωx+φ)=2=2sin.∵y=2sin是偶函數(shù),∴φ-=kπ+,k∈Z.
又0<φ<π,∴φ-=.∴f(x)=2sin=2cos ωx.
由題意得=2·,∴ω=2.故f(x)=2cos 2x.因此f=2cos=.
(2)將f(x)的圖象向右平移個(gè)單位長(zhǎng)度后,得到f的圖象,再將所得圖象上各點(diǎn)的橫坐標(biāo)伸長(zhǎng)到原來(lái)的4倍,縱坐標(biāo)不變,得到f的圖象.
所以g(x)=f=2cos=2cos.
當(dāng)2kπ≤-≤2kπ+π(k∈Z),即4kπ+≤x≤4kπ+(k∈Z)時(shí),g(x)單調(diào)遞減.
因此g(x)的單調(diào)遞減區(qū)間為(k
11、∈Z).
[沖擊名校]
1. 已知A,B,C,D是函數(shù)y=sin(ωx+φ)ω>0,0<φ<一個(gè)周期內(nèi)的圖象上的四個(gè)點(diǎn),如圖所示,A,B為y軸上的點(diǎn),C為圖象上的最低點(diǎn),E為該函數(shù)圖象的一個(gè)對(duì)稱中心,B與D關(guān)于點(diǎn)E對(duì)稱,在x軸上的投影為,則ω,φ的值為 ( )
A.ω=2,φ= B.ω=2,φ=
C.ω=,φ= D.ω=,φ=
解析:選A
由E為該函數(shù)圖象的一個(gè)對(duì)稱中心,B與D關(guān)于點(diǎn)E對(duì)稱,在x軸上的投影為,知OF=,又A,所以AF===,所以ω=2.同時(shí)函數(shù)圖象可以看作是由y=sin ωx的圖象向左平移得到,故可知==,即φ=.
2.已知
12、直線y=b(b<0)與曲線f(x)=sin在y軸右側(cè)依次的三個(gè)交點(diǎn)的橫坐標(biāo)成等比數(shù)列,則b的值是________.
解析:設(shè)三個(gè)橫坐標(biāo)依次為x1,x2,x3,
由圖及題意有解得x2=,所以b=f=-.
答案:-
[高頻滾動(dòng)]
1.已知函數(shù)f(x)=2cos(ωx+φ)+b對(duì)任意實(shí)數(shù)x有fx+=f(-x)成立,且f=1,則實(shí)數(shù)b的值為( )
A.-1 B.3
C.-1或3 D.-3
解析:選C 由f=f(-x)可知函數(shù)f(x)=2cos(ωx+φ)+b關(guān)于直線x=對(duì)稱,又函數(shù)f(x)在對(duì)稱軸處取得最值,故±2+b=1,所以b=-1或b=3.
2.函數(shù)y=sin(ωx+φ) 在區(qū)間上單調(diào)遞減,且函數(shù)值從1減小到-1,那么此函數(shù)圖象與y軸交點(diǎn)的縱坐標(biāo)為( )
A. B. C. D.
解析:選A 函數(shù)y=sin(ωx+φ)的最大值為1,最小值為-1,由該函數(shù)在區(qū)間上單調(diào)遞減,且函數(shù)值從1減小到-1,可知-=為半周期,則周期為π,ω===2,則y=sin(2x+φ).又由函數(shù)y=sin(ωx+φ)的圖象過(guò)點(diǎn),代入可得φ=,因此函數(shù)解析式為y=sin,令x=0,可得y=.