《【創(chuàng)新方案】高考數(shù)學(xué)理一輪知能檢測:第4章 第1節(jié) 平面向量的概念及其線性運(yùn)算數(shù)學(xué)大師 為您收集整理》由會員分享,可在線閱讀,更多相關(guān)《【創(chuàng)新方案】高考數(shù)學(xué)理一輪知能檢測:第4章 第1節(jié) 平面向量的概念及其線性運(yùn)算數(shù)學(xué)大師 為您收集整理(4頁珍藏版)》請在裝配圖網(wǎng)上搜索。
1、第一節(jié) 平面向量的概念及其線性運(yùn)算
[全盤鞏固]
1.設(shè)a,b都是非零向量,下列四個條件中,使=成立的充分條件是( )
A.|a|=|b|且a∥b B.a(chǎn)=-b
C.a(chǎn)∥b D.a(chǎn)=2b
解析:選D ∵表示與a同向的單位向量,∴a與b必須方向相同才能滿足=.
2.(2014紹興模擬)已知如圖所示的向量中,=,用,表示,則等于( )
A.-
B.+
C.-+
D.--
解析:選C?。剑剑剑?-)=-+.
3.已知△ABC和點(diǎn)M滿足++=0.若存在實數(shù)m使得+=m成立,則m=( )
A.2 B.3 C.4 D.5
2、
解析:選B 由++=0,易得M是△ABC的重心,且重心M分中線AE的比為AM∶ME=2∶1,∴+=2=m=,∴=2,故m=3.
4.已知向量a,b,且=a+2b,=-5a+6b,=7a-2b,則一定共線的三點(diǎn)是( )
A.A,B,D B.A,B,C
C.B,C,D D.A,C,D
解析:選A?。剑?a+6b=3.因為與有公共點(diǎn)A,所以A,B,D三點(diǎn)共線.
5.設(shè)O在△ABC的內(nèi)部,且有+2+3=0,則△ABC的面積和△AOC的面積之比為( )
A.3 B. C.2 D.
解析:選A 設(shè)AC,BC的中點(diǎn)
3、分別為M,N,則已知條件可化為(+)+2(+)=0,即2+4=0,所以=-2,說明M,O,N三點(diǎn)共線,則O為中位線MN上靠近N點(diǎn)一個三等分點(diǎn),S△AOC=S△ANC=S△ABC=S△ABC,所以=3.
6. (2014石家莊模擬)已知:如圖,||=||=1,與的夾角為120,與的夾角為30,若=λ+μ (λ、μ∈R),則等于 ( )
A. B. C. D.2
解析:選D 過C作OB的平行線交OA的延長線于D.由題意可知,∠COD=30,
∠OCD=90,
∴OD=2CD,又∵=λ,=μ,∴λ||=2μ||,即λ=2μ,故=2.
7.
4、在?ABCD中,=a,=b,=3,M為BC的中點(diǎn),則=________________(用a,b表示).
解析:由=3,得4=3=3(a+b),=a+b,所以=(a+b)-=-a+b.
答案:-a+b
8.若||=8,||=5,則||的取值范圍是________.
解析:因為=-,當(dāng),同向時,||=8-5=3;當(dāng),反向時,||=8+5=13;當(dāng),不共線時,3<||<13.綜上可知3≤||≤13.
答案:[3,13]
9.(2014太原模擬)
如圖,△ABC中,++=0,=a,=b.若=ma,=nb,CG∩PQ=H,=2,則+=________.
解析:由++=0,知G為△A
5、BC的重心,取AB的中點(diǎn)D,則===(+)=+,由P,H,Q三點(diǎn)共線,得+=1,
則+=6.
答案:6
10.
如圖,在梯形ABCD中,||=2||,M,N分別是DC,AB的中點(diǎn).若=e1,=e2,用e1,e2表示,,.
解:==;=+=-+=+-=-
=e2-e1;
=++=--+=-=e1-e2.
11.已知a,b不共線,=a,=b,=c,=d,=e,設(shè)t∈R,如果3a=c,2b=d,e=t(a+b),是否存在實數(shù)t使C,D,E三點(diǎn)在一條直線上?若存在,求出實數(shù)t的值;若不存在,請說明理由.
解:由題設(shè)知,=d-c=2b-3a,=e-c=(t-3)a+tb,C,D,E
6、三點(diǎn)在一條直線上的充要條件是存在實數(shù)k,使得=k,即(t-3)a+tb=-3ka+2kb,
整理得(t-3+3k)a=(2k-t) b.
因為a,b不共線,所以有解得t=.
故存在實數(shù)t=使C,D,E三點(diǎn)在一條直線上.
12.已知P為△ABC內(nèi)一點(diǎn),且3 +4 +5=0,延長AP交BC于點(diǎn)D,若=a,=b,用a、b表示向量,.
解:∵=-=-a,=-=-b,
又3+4 +5=0,∴3+4(-a)+5(-b)=0,∴=a+b.
設(shè)=t (t∈R),則=ta+tb.①
又設(shè)=k (k∈R),由=-=b-a,得=k(b-a).
而=+=a+.∴=a+k(b-a)=(1-k)a+k
7、b.②
由①②得解得t=.
代入①得=a+b.∴=a+b,=a+b.
[沖擊名校]
1.如圖,在△ABC中,AD=DB,AE=EC,CD與BE交于F,設(shè)=a,=b,=xa+yb,則(x,y)為( )
A. B.
C. D.
解析:選C 令=λ ,則=+=+λ=+λ=(1-λ) +λ;令=μ,則=+=+μ=+μ=μ+(1-μ) .由對應(yīng)系數(shù)相等可得解得所以=+.
2.設(shè)A1,A2,A3,A4是平面直角坐標(biāo)系中兩兩不同的四點(diǎn),若=λ (λ∈R),=μ (μ∈R),且+=2,則稱A3,A4調(diào)和分割A(yù)1,A2已知點(diǎn)C(c,0),
8、D(d,0)(c,d∈R)調(diào)和分割點(diǎn)A(0,0),B(1,0),則下面說法正確的是( )
A.C可能是線段AB的中點(diǎn)
B.D可能是線段AB的中點(diǎn)
C.C,D可能同時在線段AB上
D.C,D不可能同時在線段AB的延長線上
解析:選D 根據(jù)已知得(c,0)-(0,0)=λ[(1,0)-(0,0)],即(c,0)=λ(1,0),從而得c=λ.(d,0)-(0,0)=μ[(1,0)-(0,0)],即(d,0)=μ(1,0),得d=μ.根據(jù)+=2,得+=2.線段AB的方程是y=0,x∈[0,1].若C是線段AB的中點(diǎn),則c=,代入+=2得,=0,此等式不可能成立,故選項A的說法不正確;同理選項B的說法也不正確;若C,D同時在線段AB上,則01,d>1,則+<2,與+=2矛盾,若c<0,d<0,則+是負(fù)值,與+=2矛盾,若c>1,d<0,則<1,<0,此時+<1,與+=2矛盾,故選項D的說法是正確的.