14.1.4 整式的乘法 單項式乘單項式 單項式乘多項式。1.同底數(shù)冪的乘法公式。2.冪的乘方公式。3. 積的乘方公式。1、經(jīng)歷探索單項式乘法運算法則的過 程。分式的運算。分式的運算。(1)分式混合運算順序。15.2.1 分式乘除 混合運算和乘方。分式的乘法法則。分式的除法法則。分式進行通分的根據(jù)是什么。
廣東省八年級數(shù)學上冊Tag內(nèi)容描述:
1、14.1.4 整式的乘法 單項式乘單項式 單項式乘多項式,知識回顧,1.同底數(shù)冪的乘法公式:,am an =,am+n,(m,n都是正整數(shù)),2.冪的乘方公式:,(am)n=,amn,(m、n都是正整數(shù)),3. 積的乘方公式,4. 注意以上公式的逆運用,(ab)n。
2、14.1.4 整式的乘法 單項式乘單項式,自學目標,1、經(jīng)歷探索單項式乘法運算法則的過 程,能熟練地正確地進行單項式乘法 計算。 2、培養(yǎng)學生歸納、概括能力,以及運算 能力。,自學內(nèi)容和要求 預習課本第98頁-第99頁,完。
3、14.1.4 整式的乘法 多項式乘多項式,點滴回顧,單項式乘單項式的法則:,單項式與單項式相乘,把它們的系數(shù)、相同字母分別相乘,對于只在一個單項式里含有的字母,則連同它的指數(shù)作為積的一個因式。,單項式乘多項式法則。
4、14.1.3 積的乘方,1.同底數(shù)冪的乘法公式:,am an =,am+n,(m,n都是正整數(shù)),2.冪的乘方公式:,(am)n=,amn,復習回顧,(m、n都是正整數(shù)),3. 注意以上公式的逆運用,附加公式:(am)n= (an) m,課前訓練,2.已知 2m= 3 ,3n=5。
5、分式的運算,分式的加減(2),1、明確分式混合運算的順序,熟練進行分式的混合運算。 2、總結運算的方法與技巧,鞏固分式加減運算,提高運算能力。,學習目標,效果檢測,1、課本P142練習2,(1)分式混合運算順序。
6、14.1.1 同底數(shù)冪的乘法,學習目標,1.通過自學探究掌握同底數(shù)冪相乘的規(guī)律; 2.理解掌握規(guī)律之后能夠靈活地應用。,請注意不要被書中簡單的內(nèi)容迷惑了你的眼睛!,an 表示的意義是什么?其中a、n、an分 別叫做什么?,an。
7、15.2.1 分式乘除 混合運算和乘方,點滴回顧,分式的乘法法則:,分式的除法法則:,知識運用,1.請問下面的運算過程對嗎?,同級運算應按從左到右的順序進行.,Ax3且x-2 Bx3且x4 Cx3且x-3 Dx-2且x。
8、整式的除法,自學目標,經(jīng)歷探索同底數(shù)冪除法、單項式除法、多項式除以單項式的運算的過程 了解整式的除法的運算性質(zhì),并能熟練應用,自學指導1,閱讀課本P102-103至例7,并完成P104練習T1:,1.同底數(shù)冪相除,。
9、添括號法則,我們已學了什么乘法公式?,一、平方差公式:,復習回顧,二、完全平方公式:,(a+b)2 = a2+2ab+b2 (a-b)2 = a2-2ab+b2,(a+b)(a-b) = a2-b2,(-a-b)2 =(a+b)2 (-a+b)2=(a-b)2 =(b-a)2,知識回顧,遇“加”不。
10、15.1.2 分式的通分,填空:,思考:分式也可以進行通分嗎?,思考:分式進行通分的根據(jù)是什么?,探求新知,通分,分式的基本性質(zhì),最簡公分母,9,10,ac,ab,自學指導 看課本第132頁 想一想:1、什么叫分式的通分? 2、分式通。
11、完全平方公式,自學目標,1、經(jīng)歷探索完全平方公式的過程,會推導完全平方公式,能說出公式的結構特征,并能運用公式進行簡單計算 2、進一步領會由特殊到一般以及數(shù)形結合的思想。,(閱讀課本P109-110),自學指導,1。
12、再展鋒芒,1.當x取何值時,分式 的值為正.,2.當x_________時,分式 的值為負.,3.當 x取何值時,分式 的值為負.,1,15.1.2 分式的基本性質(zhì)與約分,學習目標:,1理解分式的基本性質(zhì)。會用分式的基本性質(zhì)將分式變形. 2。
13、自習目標,1. 經(jīng)歷探索平方差公式的過程,進一步發(fā)展符號感和推理能力、歸納能力 2.會推導平方差公式并掌握公式的結構特征,能運用公式進行簡單的計算,自學指導,1. 預習課本P107-108,完成課后練習,2.平方差公式。
14、整式,單項式,多項式,:表示數(shù)或字母的積的式子.,:幾個單項式的和.,例如: 3 、 a、 4b、x2yz3,例如:a+1、x2yz3+xy+x,15.1.1從分數(shù)到分式,1、類比分數(shù),理解分式的概念; 2、掌握分式有意義的條件; 3。
15、1412 冪的乘方,回顧與思考,復習回顧,am an =,= am+n+p (m、n、p都是正整數(shù)),am+n (當m、n都是正整數(shù)),amanap,1.同底數(shù)冪的乘法公式,(a-b)2 = (b-a)2,2. 兩個常用公式(記錄),(a-b)3 =(b-a)3,12,10,2. (xy)2。
16、分式的運算,課前準備,分數(shù)乘法法則: 分子相乘的積作分子,分母相乘的積作分母,然后再約分;,分數(shù)除法法則: 把除數(shù)的分子、分母顛倒位置后,與被除數(shù)相乘,然后再約分; 1)用被除數(shù)的分子與除數(shù)的分母相乘作為分。