SSCK20A數(shù)控車床主軸及主軸箱的數(shù)控加工及數(shù)控編程設(shè)計(jì)【說(shuō)明書+CAD】
購(gòu)買設(shè)計(jì)請(qǐng)充值后下載,資源目錄下的文件所見即所得,都可以點(diǎn)開預(yù)覽,資料完整,充值下載可得到資源目錄里的所有文件?!咀ⅰ浚篸wg后綴為CAD圖紙,doc,docx為WORD文檔,原稿無(wú)水印,可編輯。具體請(qǐng)見文件預(yù)覽,有不明白之處,可咨詢QQ:12401814
摘 要隨著社會(huì)的進(jìn)步,制造業(yè)的發(fā)展越來(lái)越迅速,數(shù)控技術(shù)和數(shù)控裝備是制造工業(yè)現(xiàn)代化的重要基礎(chǔ)。這個(gè)基礎(chǔ)是否牢固直接影響到一個(gè)國(guó)家的經(jīng)濟(jì)發(fā)展和綜合國(guó)力,關(guān)系到一個(gè)國(guó)家的戰(zhàn)略地位。因此,世界上各工業(yè)發(fā)達(dá)國(guó)家均采取重大措施來(lái)發(fā)展自己的數(shù)控技術(shù)及其產(chǎn)業(yè)。在我國(guó),數(shù)控技術(shù)與裝備的發(fā)展亦得到了高度重視,近年來(lái)取得了相當(dāng)大的進(jìn)步。數(shù)控機(jī)床發(fā)展很快,作為數(shù)控機(jī)床的重要部分,主軸箱的設(shè)計(jì)更新也越來(lái)越快。我設(shè)計(jì)的是SSCK20A數(shù)控機(jī)床主軸和主軸箱箱體加工工藝以及數(shù)控編程,其中涉及了主軸和箱體加工中刀具、量具、毛坯、定位基準(zhǔn)等的選擇。設(shè)計(jì)圖為兩張零號(hào)圖紙,一張一號(hào)圖紙,兩張二號(hào)圖紙。關(guān)鍵詞:數(shù)控加工工藝 、數(shù)控編程、定位基準(zhǔn)、主軸箱、工藝編程。AbstractOre and Along with the advance of society, the development of manufacturing industry is mmore quick, the technical equipment of numerical control of numerical control is to make industrial modern important foundation. Whether directly affect a economy of country strongly develop this foundation with the countrys comprehensive power, concern a strategic position of country. Therefore on world, each industrial developed countries adopts significant measure to develop the own technical and its estate of numerical control. in recent years, have gotten fairly big advance. The development of numerical control of machine tool is very rapid , is the important part of the machine tool of numerical control, the design of the case of main shaft update also more and more rapid. What I design is that the case casing processing technology as well as programming of numerical control of machine tool of main shaft have in which been concerned with the option of cutting tool, measuring tool, blank and location standard etc. in casing processing. Design drawing is the two blueprints No. 0 and a blueprint No. 1 and two blueprints No. 2 .Keyword: Number control to process the craft、count to control to weave the distance、fixed position basis、 principal axis box、craft plait distance。目 錄摘要:1Abstract2第一章 緒論5第二章 數(shù)控加工概念62.1高速、高效、高精度、高可靠性8第三章 數(shù)控車床93.1數(shù)控車床的組成93.2數(shù)控車床的特點(diǎn) 113.3數(shù)控車床的適用范圍及工作原理12第四章 數(shù)控加工工藝分析154.1 毛坯的選擇184.2確定數(shù)控加工內(nèi)容184.3數(shù)控加工零件的工藝性分析18 4.4定位基準(zhǔn)的選擇19 4.4.1精基準(zhǔn)的選擇19 4.4.2粗基準(zhǔn)的選擇19 4.5加工方法的選擇20 4.6刀具的選擇21 4.6.1數(shù)控車刀的類型與刀片選擇214.7夾具的選擇214.8量具的選擇224.9數(shù)控加工工藝路線設(shè)計(jì)22 4.9.1外圓表面的加工方法的選擇22第五章 工序的劃分245.1加工順序的安排255.1.1切削加工工序安排255.1.2熱處理工序安排255.1.3輔助工序安排26 5.2數(shù)控加工工序設(shè)計(jì)265.3走刀路線和工步順序的確定265.4主軸機(jī)械加工工藝規(guī)程卡片275.5主軸的工藝分析275.6箱體機(jī)械加工工藝規(guī)程卡片275.7箱體的工藝分析28第六章 數(shù)控加工程序296.1主軸數(shù)控加工程序29 6.2箱體數(shù)控加工部分的程序31 6.2.1安裝面的數(shù)控加工31 6.2.2主軸孔的數(shù)控加工程序33第七章 畢業(yè)設(shè)計(jì)總結(jié)377.1成本分析37 7.2經(jīng)濟(jì)效益分析377.3前景預(yù)測(cè)37結(jié)論38參考文獻(xiàn)39致謝40附錄1專題41附錄2外文翻譯(外文部分)49附錄3外文翻譯(中文部分)62附錄4主軸機(jī)械加工工藝卡片69附錄5主軸箱機(jī)械加工工藝卡片70第一章緒論隨著社會(huì)的進(jìn)步,制造業(yè)的發(fā)展越來(lái)越迅速,數(shù)控技術(shù)和數(shù)控裝備是制造工業(yè)現(xiàn)代化的重要基礎(chǔ)。這個(gè)基礎(chǔ)是否牢固直接影響到一個(gè)國(guó)家的經(jīng)濟(jì)發(fā)展和綜合國(guó)力,關(guān)系到一個(gè)國(guó)家的戰(zhàn)略地位。因此,世界上各工業(yè)發(fā)達(dá)國(guó)家均采取重大措施來(lái)發(fā)展自己的數(shù)控技術(shù)及其產(chǎn)業(yè)。 在我國(guó),數(shù)控技術(shù)與裝備的發(fā)展亦得到了高度重視,近年來(lái)取得了相當(dāng)大的進(jìn)步?,F(xiàn)在不僅能夠生產(chǎn)車、鉆、鏜、銑類及磨削和其它類型的數(shù)控機(jī)床,而且還可以生產(chǎn)各種加工中心、車削中心、柔性制造單元、組合柔性制造單元等高性能、高自動(dòng)化的數(shù)控機(jī)床和柔性制造系統(tǒng)。我國(guó)數(shù)控機(jī)床的品種已有200多個(gè),產(chǎn)量已達(dá)到年產(chǎn)10000臺(tái)的水平。特別是在通用微機(jī)數(shù)控領(lǐng)域,以PC平臺(tái)為基礎(chǔ)的國(guó)產(chǎn)數(shù)控系統(tǒng),已經(jīng)走在了世界前列。但是,我國(guó)在數(shù)控技術(shù)研究和產(chǎn)業(yè)發(fā)展方面亦存在不少問(wèn)題,特別是在技術(shù)創(chuàng)新能力、商品化進(jìn)程、市場(chǎng)占有率等方面情況尤為突出。我的設(shè)計(jì)題目為SSCK20A數(shù)控機(jī)床主軸和主軸箱箱體數(shù)控加工工藝分析及數(shù)控加工程序編制,通過(guò)對(duì)數(shù)控機(jī)床的箱體設(shè)計(jì)來(lái)加深自己對(duì)數(shù)控機(jī)床的了解,為以后自己進(jìn)入機(jī)械廠這樣的工作單位打下基礎(chǔ)。由于我所了解的知識(shí)有限,所以我的設(shè)計(jì)難免有缺陷。在本次設(shè)計(jì)中,有導(dǎo)師,同學(xué)的很大幫助,對(duì)此非常感謝。第二章數(shù)控加工概念數(shù)控加工就是泛指在數(shù)控機(jī)床上進(jìn)行零件加工的工藝過(guò)程。數(shù)控機(jī)床是一種用計(jì)算機(jī)來(lái)控制的機(jī)床,用來(lái)控制機(jī)床的計(jì)算機(jī)不管是專用計(jì)算機(jī),還是通用計(jì)算機(jī)都統(tǒng)稱為數(shù)控系統(tǒng)。數(shù)控機(jī)床的運(yùn)動(dòng)和輔助動(dòng)作均受控于數(shù)控系統(tǒng)發(fā)出的指令。在數(shù)控機(jī)床上加工零件與在普通機(jī)床上加工零件,其加工方法并無(wú)多大差異,但是在機(jī)床的運(yùn)動(dòng)控制上卻有很大的區(qū)別。在普通機(jī)床加工時(shí),機(jī)床的運(yùn)動(dòng)受控于操作工人。如機(jī)床的開啟、主軸轉(zhuǎn)速的變換、走刀路徑、運(yùn)動(dòng)部件的位移量,以及機(jī)床的停止等都是依靠操作工人來(lái)控制的。在數(shù)控機(jī)床上加工零件時(shí),機(jī)床的運(yùn)動(dòng)和輔助動(dòng)作的實(shí)現(xiàn)均受控于數(shù)控系統(tǒng)發(fā)出的指令。而數(shù)控系統(tǒng)的指令是由程序員根據(jù)工件的材質(zhì)、加工要求、機(jī)床的特性和系統(tǒng)所規(guī)定的指令格式編制的。編寫加工指令的過(guò)程就稱為編程。所謂編程,就是把加工零件的工藝過(guò)程、工參數(shù)、運(yùn)動(dòng)要求用數(shù)字指令形式記錄在介質(zhì)上,并輸入數(shù)控系統(tǒng)。數(shù)控系統(tǒng)根據(jù)程序指令向伺服裝置和其它功能部件發(fā)出運(yùn)動(dòng)或終斷信息來(lái)控制機(jī)床的各種運(yùn)動(dòng)。當(dāng)零件的加工程序結(jié)束時(shí),機(jī)床便會(huì)自動(dòng)停止。任何一種數(shù)控機(jī)床,在其數(shù)控系統(tǒng)中若沒(méi)有輸入程序指令,數(shù)控機(jī)床不能工作。2.1、高速、高效、高精度、高可靠性 要提高加工效率,首先必須提高切削和進(jìn)給速度,同時(shí),還要縮短加工時(shí)間;要確保加工質(zhì)量,必須提高機(jī)床部件運(yùn)動(dòng)軌跡的精度,而可靠性則是上述目標(biāo)的基本保證。為此,必須要有高性能的數(shù)控裝置作保證。 1)高速、高效 機(jī)床向高速化方向發(fā)展,可充分發(fā)揮現(xiàn)代刀具材料的性能,不但可大幅度提高加工效率、降低加工成本,而且還可提高零件的表面加工質(zhì)量和精度。超高速加工技術(shù)對(duì)制造業(yè)實(shí)現(xiàn)高效、優(yōu)質(zhì)、低成本生產(chǎn)有廣泛的適用性。 新一代數(shù)控機(jī)床(含加工中心)只有通過(guò)高速化大幅度縮短切削工時(shí)才可能進(jìn)一步提高其生產(chǎn)率。超高速加工特別是超高速銑削與新一代高速數(shù)控機(jī)床特別是高速加工中心的開發(fā)應(yīng)用緊密相關(guān)。90年代以來(lái),歐、美、日各國(guó)爭(zhēng)相開發(fā)應(yīng)用新一代高速數(shù)控機(jī)床,加快機(jī)床高速化發(fā)展步伐。高速主軸單元(電主軸,轉(zhuǎn)速15000100000r/min)、高速且高加/減速度的進(jìn)給運(yùn)動(dòng)部件(快移速度60120m/min,切削進(jìn)給速度高達(dá)60m/min)、高性能數(shù)控和伺服系統(tǒng)以及數(shù)控工具系統(tǒng)都出現(xiàn)了新的突破,達(dá)到了新的技術(shù)水平。隨著超高速切削機(jī)理、超硬耐磨長(zhǎng)壽命刀具材料和磨料磨具,大功率高速電主軸、高加/減速度直線電機(jī)驅(qū)動(dòng)進(jìn)給部件以及高性能控制系統(tǒng)(含監(jiān)控系統(tǒng))和防護(hù)裝置等一系列技術(shù)領(lǐng)域中關(guān)鍵技術(shù)的解決,應(yīng)不失時(shí)機(jī)地開發(fā)應(yīng)用新一代高速數(shù)控機(jī)床。 依靠快速、準(zhǔn)確的數(shù)字量傳遞技術(shù)對(duì)高性能的機(jī)床執(zhí)行部件進(jìn)行高精密度、高響應(yīng)速度的實(shí)時(shí)處理,由于采用了新型刀具,車削和銑削的切削速度已達(dá)到5000米8000米/分以上;主軸轉(zhuǎn)數(shù)在30000轉(zhuǎn)/分(有的高達(dá)10萬(wàn)轉(zhuǎn)/分)以上;工作臺(tái)的移動(dòng)速度:(進(jìn)給速度),在分辨率為1微米時(shí),在100米/分(有的到200米/分)以上,在分辨率為0.1微米時(shí),在24米/分以上;自動(dòng)換刀速度在1秒以內(nèi);小線段插補(bǔ)進(jìn)給速度達(dá)到12米/分。根據(jù)高效率、大批量生產(chǎn)需求和電子驅(qū)動(dòng)技術(shù)的飛速發(fā)展,高速直線電機(jī)的推廣應(yīng)用,開發(fā)出一批高速、高效的高速響應(yīng)的數(shù)控機(jī)床以滿足汽車、農(nóng)機(jī)等行業(yè)的需求。還由于新產(chǎn)品更新?lián)Q代周期加快,模具、航空、軍事等工業(yè)的加工零件不但復(fù)雜而且品種增多。我們學(xué)校的數(shù)控加工中心引進(jìn)的先進(jìn)數(shù)控加工中心設(shè)備就是高速的切削,在我國(guó)這樣轉(zhuǎn)速的加工中心很少,因此,大力發(fā)展高速的數(shù)控機(jī)床是未來(lái)的發(fā)展方向。2)高精度 從精密加工發(fā)展到超精密加工(特高精度加工),是世界各工業(yè)強(qiáng)國(guó)致力發(fā)展的方向。其精度從微米級(jí)到亞微米級(jí),乃至納米級(jí)(90的刀具;而副偏角的選擇要考慮是否已加工表面輪廓產(chǎn)生干涉。刀具選擇是數(shù)控加工的工序設(shè)計(jì)的重要內(nèi)容之一,它不僅影響機(jī)床的加工效率,而且直接影響加工質(zhì)量。另外數(shù)控機(jī)床主軸轉(zhuǎn)速比不同機(jī)床高12倍,且輸出功率大,因此與傳統(tǒng)的加工方法相比,數(shù)控加工對(duì)刀具的要求更高,不僅要求精度高、強(qiáng)度大、剛度好、耐用度高,而且要求尺寸穩(wěn)定、安裝方便。參考機(jī)械加工工藝師手冊(cè)選用微調(diào)鏜刀。刀具材料采用高速鋼。4.7夾具的選擇數(shù)控加工的特點(diǎn)對(duì)夾具提出了兩個(gè)基本要求:一是保證夾具的坐標(biāo)方向與機(jī)床的坐標(biāo)方向相對(duì)固定:二是能協(xié)調(diào)零件與機(jī)床坐標(biāo)系的尺寸/除此之外,重點(diǎn)考慮以下幾點(diǎn)。1) 單件小批量生產(chǎn)時(shí),優(yōu)先選用組合夾具,可調(diào)夾具和其他通用夾具,以縮短生產(chǎn)準(zhǔn)備時(shí)間和節(jié)省生產(chǎn)費(fèi)用。2) 在成批生產(chǎn)時(shí),才考慮采用專用夾具,并力求結(jié)構(gòu)簡(jiǎn)單。3) 零件的裝卸要快速、方便、可靠,以縮短機(jī)床的停頓時(shí)間。4) 夾具上各零部件應(yīng)不妨礙機(jī)床對(duì)零件各表面的加工,既夾具要敞開,其定位、夾緊機(jī)構(gòu)元件不能影響加工中的走刀。5) 為提高數(shù)控機(jī)床的效率,批量較大的零件加工可采用多工位、氣動(dòng)或液壓夾具。4.8量具的選擇數(shù)控加工主要用于單件小批量生產(chǎn),一般采用通用量具,如游標(biāo)卡尺、百分表等。查機(jī)械加工工藝師手冊(cè)表55-7我選擇杠桿千分表,游標(biāo)卡尺4.9數(shù)控加工工藝路線設(shè)計(jì)工藝路線的擬定是制定工藝規(guī)程的重要內(nèi)容之一,其主要內(nèi)容包括:選擇各加工表面的加工方法、劃分加工階段、劃分工序以及安排工序的先后順序等。設(shè)計(jì)者應(yīng)根據(jù)從生產(chǎn)實(shí)踐中總結(jié)出來(lái)的一些綜合性工藝原則,結(jié)合本廠的實(shí)際生產(chǎn)條件,提出幾種方案,通過(guò)對(duì)比分析,從中選擇最佳方案。選擇機(jī)械零件的結(jié)構(gòu)形狀是多種多樣的,但它們都是由平面、外圓柱面、內(nèi)圓柱面或曲面、成形面等基本表面組成的。每一種表面都有多種加工方法,具體選擇時(shí)應(yīng)根據(jù)零件的加工精度、表面粗糙、材料、結(jié)構(gòu)形狀、尺寸及生產(chǎn)類型等因素,選用相應(yīng)的加工方法和加工方案。4.9.1外圓表面的加工方法的選擇外圓表面的主要加工方法是車小和磨削。當(dāng)表面粗糙度要求較高時(shí),還要經(jīng)光整加工。 最終工序?yàn)檐囅鞯募庸し桨福m用與淬火鋼以外的各種金屬。 最終工序?yàn)槟ハ鞯募庸し桨福m用與淬火鋼,未淬火鋼和鑄鐵,不適用于有色金屬,因?yàn)橛猩饘夙g性大,磨削時(shí)易堵塞砂輪。 最終工序?yàn)榫?xì)車和金剛車的加工方案,適用于要求較高的有色金屬的精加工 最終工序?yàn)楣庹庸?,如研磨、超精磨及超精加工等,為提高生產(chǎn)率和加工質(zhì)量,一般在光整加工前進(jìn)行精磨。 對(duì)表面粗糙度要求高而尺寸精度要求不高的外圓,可采用滾壓或拋光。在數(shù)控機(jī)床上加工的零件,一般按工序集中原則劃分工序,劃分方法如下。1)按所用的刀具劃分 以同一把刀具完成的那一部分工藝過(guò)程為一道工序,這種方法適用于工件的待加工表面較多、機(jī)床連續(xù)工作時(shí)間過(guò)長(zhǎng)、加工程序的編制和檢查難道較大等情況。加工中心常用這種方法劃分。2)按安裝次數(shù)劃分 以同一把刀具完成的那一部分工藝過(guò)程為一道工序。這種方法適用于工件的加工內(nèi)容不多工件,加工完成后就能達(dá)到后達(dá)到待檢狀態(tài)。第五章加工工藝規(guī)程的編制(1)工序劃分的原則工序劃分可以采用兩種不同的原則,即工序集中原則和工序分散原則。 工序集中原則 是指每道工序包括盡可能多的加工內(nèi)容,從而使工序的總數(shù)減少。如果箱體加工采用工序集中原則,可以高效的專用設(shè)備和數(shù)控機(jī)床,提高生產(chǎn)率;減少工序數(shù)目,縮短工藝路線,簡(jiǎn)化生產(chǎn)計(jì)劃和生產(chǎn)組織工作;減少機(jī)床的數(shù)量、操作工人數(shù)和占地面積;減少工件裝夾次數(shù),不僅保證了個(gè)加工表面間的相互位置精度,而且減少夾具數(shù)量和裝夾工件的輔助時(shí)間。缺點(diǎn)是專用設(shè)備和工藝裝備投資達(dá)、調(diào)整維修比較麻煩、生產(chǎn)準(zhǔn)備周期長(zhǎng),不利于轉(zhuǎn)產(chǎn)。 序分散原則 就是將工件的加工分散在較多的工序內(nèi)進(jìn)行,每道工序的加工內(nèi)容較少,。采用工序分散原則的優(yōu)點(diǎn)是:加工設(shè)備和裝備結(jié)構(gòu)簡(jiǎn)單,調(diào)整和維修方便,操作簡(jiǎn)單,轉(zhuǎn)產(chǎn)容易;有利于選擇合理的切削用量,減少機(jī)動(dòng)時(shí)間。缺點(diǎn)是工藝路線較長(zhǎng),所需設(shè)備和工人較多,占地面積較大。(2)工序的劃分方法 工序的劃分主要考慮生產(chǎn)綱領(lǐng)、所用設(shè)備及零件本身的結(jié)構(gòu)和技術(shù)要求等。大批大量生產(chǎn)時(shí),若使用多軸、多刀的高效加工中心,可按工序集中原則組織生產(chǎn);若在由組合機(jī)床組成的自動(dòng)線上加工,供需一般按分散原則劃分。隨著現(xiàn)代數(shù)控技術(shù)的發(fā)展,特備是加工中心的應(yīng)用,工藝路線的安排更多地趨向于工序集中。單件小批生產(chǎn)時(shí),通常采用工序集中原則。成批生產(chǎn)時(shí),可按工序集中原則劃分,也可按工序分散原則劃分,應(yīng)視具體情況而定。對(duì)于結(jié)構(gòu)尺寸和重量都很大的重型零件,應(yīng)采用工序集中原則,以減少裝夾次數(shù)和運(yùn)輸量。對(duì)于剛性差、精度高的零件,應(yīng)按工序需分散原則劃分工序。(3)工序集中的劃分方法在數(shù)控機(jī)床上加工的零件,一般按工序集中原則劃分工序,劃分方法如下: 按所用刀具劃分 以同一把刀具完成的那一部份工藝過(guò)程維一道工序,這種方法適用于工件的待加工表面較多、機(jī)床連續(xù)工作時(shí)間過(guò)長(zhǎng)、加工工序的變成和檢查難度較大等情況。 按安裝次數(shù)劃分 以一次安裝完成的那一部分工藝過(guò)程維一道工序。這種方法適用于工件的加工內(nèi)容不多的工件,加工完成后就能達(dá)到待檢狀態(tài)。 按粗、精加工劃分 即粗加工中完成的那一部分工藝過(guò)程稱為一道工序,精加工中完成的那一部分工藝過(guò)程稱為一道工序。這種劃分方法適用于加工后的變形較大,需粗、精加工分開的零。 按加工部位劃分 即以完成相同型面的那一部分工藝過(guò)程為一道工序,對(duì)于加工表面多而復(fù)雜的零件,可按其結(jié)構(gòu)特點(diǎn)劃分成多道工序。5.1零件加工順序的安排在選定加工方法、劃分工序后,我們要對(duì)加工順序進(jìn)行安排。零件的加工工序包括切削加工工序、熱處理工序、輔助工序(包括表面處理、清洗和檢驗(yàn)等),這些工序直接影響到零件的加工質(zhì)量、生產(chǎn)效率和加工成本。因此我們要合理安排好箱體的切削加工、熱處理和輔助工序順序。5.1.1切削加工工序安排 切削加工工序安排原則包括基面先行原則、先粗后精原則、先主后次原則和先面后孔原則。根據(jù)以上的原則,對(duì)于主軸我們應(yīng)該先加工端面,然后一端面作為定位基準(zhǔn)再加工臺(tái)階軸的各部分外圓面。對(duì)于箱體我們首先要把B面先銑好,因?yàn)樗呛竺婕庸さ亩ㄎ换鶞?zhǔn),但我們不采用數(shù)控機(jī)床加工,可以在普通的銑床上加工。接著我們要根據(jù)先粗后精原則和先主后次原則來(lái)加工個(gè)行孔,為了避免基準(zhǔn)不重合引起的誤差,我們先加工4650.2,接著先后加工加工150H7行孔,接著先后銑面350、面320、面380、然后鏜140行孔、141.5行孔。但是要粗、精分開,粗鏜半精鏜精鏜。5.1.2熱處理工序安排 為了提高材料的力學(xué)性能、改善材料的切削加工性和消除工件的內(nèi)應(yīng)力,箱體在加工之前要進(jìn)行正火熱處理,可以消除在毛坯制造時(shí)產(chǎn)生的殘余應(yīng)力,第1頁(yè)共2頁(yè)機(jī)械加工工藝卡片產(chǎn)品型號(hào)零件圖號(hào)產(chǎn)品名稱SSCK20A零件名稱主軸序號(hào)工序工 序 內(nèi) 容車間設(shè)備工 藝 裝 備工等工時(shí)單件備注夾具刃具量具輔具0備料10精鍛立式精鍛機(jī)20熱處理正火30鋸頭40銑端面專用機(jī)床50粗車車各外圓面臥式車床60熱處理調(diào)質(zhì)220240HBS70車大端面臥式車床80粗車仿形車小端各部仿形車床90鉆鉆打斷各孔搖臂鉆床第2頁(yè)共2頁(yè)機(jī)械加工工藝卡片產(chǎn)品型號(hào)零件圖號(hào)產(chǎn)品名稱SSCK20A零件名稱主軸序號(hào)工序工 序 內(nèi) 容車間設(shè)備工 藝 裝 備工等工時(shí)單件備注夾具刃具量具輔具100熱處理高頻感應(yīng)加熱淬火110數(shù)車精車各外圓并車槽數(shù)控車床120粗磨粗磨個(gè)外圓萬(wàn)能外圓磨床130精銑銑鍵槽銑床140精車加工三段螺紋臥式車床150粗精磨粗精磨各外圓萬(wàn)能外圓磨床第1頁(yè)共6頁(yè)機(jī)械加工工藝卡片產(chǎn)品型號(hào)零件圖號(hào)產(chǎn)品名稱SSCK20A零件名稱主軸箱體序號(hào)工序工 序 內(nèi) 容車間設(shè)備工 藝 裝 備工等工時(shí)單件備注夾具刃具量具輔具0鑄造正火10劃線照顧毛坯各部劃立車加工線20立車車4650.2兩面,各面均留量3mm30劃線劃鏜序加工線40臥鏜鏜銑A面,B面留量3mm以A面為基面,B面為導(dǎo)向粗鏜150(-0.008,+0.002)140(-0.007,+0.003)各孔留量半徑3mm過(guò)孔留量半徑3mm050二次正火060劃線劃車序加工線第2頁(yè)共6頁(yè)機(jī)械加工工藝卡片產(chǎn)品型號(hào)零件圖號(hào)產(chǎn)品名稱SSCK20A零件名稱主軸箱序號(hào)工序工 序 內(nèi) 容車間設(shè)備工 藝 裝 備工等工時(shí)單件備注夾具刃具量具輔具070立車車4650.2尺寸兩面,至4650.1mm,兩面平行0.1mm080劃線劃刨、鏜序加工線090臥鏜1)鏜銑A面、B面各留量0.50.6mm銑30尺寸下面達(dá)圖銑5尺寸空刀至尺寸2)按線銑右視圖上部?jī)商?35度斜面達(dá)圖銑:1500.2尺寸上面留量0.5mm鉆:2M12底孔 X8(起吊孔)鉆:2M12底孔(右上圖局部剖)按線鉆攻:左、右視圖4M16(裝配起吊孔)3)以A面為基面、 B面導(dǎo)向粗鏜150(-0.008,+0.002)140(-0.007,+0.003)各孔留量半徑11.2 mm過(guò)孔留量半徑 11.2 mm第3頁(yè)共6頁(yè)機(jī)械加工工藝卡片產(chǎn)品型號(hào)零件圖號(hào)產(chǎn)品名稱SSCK20A零件名稱主軸箱序號(hào)工序工 序 內(nèi) 容車間設(shè)備工 藝 裝 備工等工時(shí)單件備注夾具刃具量具輔具100數(shù)鏜以465尺寸左面為基面; 工件壓在工作臺(tái)一角位置, 找正A面在0.1以內(nèi), 精銑A、B面(B面精加工用30立銑刀側(cè)刃加工,不許有接刀痕,吃刀深度0.2mm)粗糙度達(dá)Ra3.2,平面度達(dá)0.05mm110臥鏜 1)以465尺寸左面為基面;工件壓在工作臺(tái)一角位置找正A面在0.1以內(nèi),銑3X2空刀(根據(jù)刀具情況可加工至5X3)2)工作太轉(zhuǎn)90度,包拯350尺寸,銑350尺寸左面達(dá) Ra6.3。3)銑320尺寸兩面:左面粗糙度達(dá)Ra3.2。4)銑380尺寸右6.3 面。5)鉆4M6、2M8底孔。120臥鏜以A面為基面,B面導(dǎo)向,上等高墊鐵、位置公差軍達(dá)圖紙要求第4頁(yè)共6頁(yè)機(jī)械加工工藝卡片產(chǎn)品型號(hào)零件圖號(hào)產(chǎn)品名稱SSCK20A零件名稱 主軸箱序號(hào)工序工 序 內(nèi) 容車間設(shè)備工 藝 裝 備工等工時(shí)單件備注夾具刃具量具輔具半精鏜:150(-0.008,+0.002)140(-0.007,+0.003)、141.5孔留量,半徑0.50.6mm。半精劃:底面留量0.2mm精銑:280范圍內(nèi),240范圍內(nèi)達(dá)Ra1.64650.2至465(+0.2,+0.3)130臥鏜1、以465尺寸左面為基面,找正A面。在0.05以內(nèi)實(shí)測(cè)140孔尺寸,按實(shí)際尺寸計(jì)算;精銑 1500.2尺寸上面。要求上面與C、D平行0.03mm。鉆4M10底孔2、保證250.2,80尺寸自劃線,鉆劃622X36140裝配鉗刮研A、B面。25MMX25MM范圍內(nèi)不少于8個(gè)點(diǎn)。B A達(dá)0.02MM150數(shù)鏜以A面為基面、B面導(dǎo)向、第5頁(yè)共6頁(yè)機(jī)械加工工藝卡片產(chǎn)品型號(hào)零件圖號(hào)產(chǎn)品名稱SSCK20A零件名稱主軸箱序號(hào)工序工 序 內(nèi) 容車間設(shè)備工 藝 裝 備工等工時(shí)單件備注夾具刃具量具輔具保證B面與主軸孔平行0.02上等高墊鐵,300(0,+0.1)至300(0,+0.05)。500.1尺寸達(dá)500.05mm。保證深度尺寸115(-0.2,-0.1)。精鏜141.5過(guò)孔至尺寸,精鏜:140、150孔??讖焦畎摧S承尺寸配鏜;160臥鏜1)精劃Ra1.6底面。精銑:280、240(檢查范圍)。2)引窩:左視:6M8。 右視:6M10。在右視圖125度左側(cè)斜面打編號(hào)3) 三坐標(biāo)檢測(cè):按圖紙技術(shù)要求檢測(cè), 孔徑用比較儀測(cè)量。170鉆按窩鉆攻:6M8、6M10180鉗工各銳角倒鈍、去刺第6頁(yè)共6頁(yè)機(jī)械加工工藝卡片產(chǎn)品型號(hào)零件圖號(hào)產(chǎn)品名稱SSCK20A零件名稱主軸箱序號(hào)工序工 序 內(nèi) 容車間設(shè)備工 藝 裝 備工等工時(shí)單件備注夾具刃具量具輔具攻絲:4M6、4M12、2M84M10。190噴漆姓名: 任務(wù)下達(dá)日期: 年月日設(shè)計(jì)(論文)開始日期: 年 月 日設(shè)計(jì)(論文)完成日期: 年 月 日一、設(shè)計(jì)(論文)題目:SSCK20A數(shù)控車床主軸及主軸箱的數(shù)控加工及數(shù)控編程 二、專題題目: 數(shù)控五軸技術(shù)及數(shù)控編程 三、設(shè)計(jì)的目的和意義:隨著社會(huì)的進(jìn)步,制造業(yè)的發(fā)展越來(lái)越迅速,數(shù)控技術(shù)和數(shù)控裝備是制造工業(yè)現(xiàn)代化的重要基礎(chǔ)。這個(gè)基礎(chǔ)是否牢固直接影響到一個(gè)國(guó)家的經(jīng)濟(jì)發(fā)展和綜合國(guó)力,關(guān)系到一個(gè)國(guó)家的戰(zhàn)略地位。因此,世界上各工業(yè)發(fā)達(dá)國(guó)家均采取重大措施來(lái)發(fā)展自己的數(shù)控技術(shù)及其產(chǎn)業(yè)。在我國(guó),數(shù)控技術(shù)與裝備的發(fā)展亦得到了高度重視,近年來(lái)取得了相當(dāng)大的進(jìn)步。數(shù)控機(jī)床發(fā)展很快,作為數(shù)控機(jī)床的重要部分,主軸箱的設(shè)計(jì)更新也越來(lái)越快。四、設(shè)計(jì)(論文)主要內(nèi)容:(1)SSCK20A數(shù)控車床的主軸箱展開圖(1張0號(hào))、主軸零件圖(1張1號(hào))、箱體零件圖(1張0號(hào))、帶輪零件圖(1張2號(hào))、前端蓋零件圖(1張2號(hào));(2)主軸及主軸箱的加工工藝規(guī)程;(3)主軸及主軸箱的部分加工工藝的數(shù)控程序;五、設(shè)計(jì)目標(biāo):主要完成對(duì)SSCK20A數(shù)控車床的主軸及主軸箱加工工藝規(guī)程設(shè)計(jì)以及部分加工工藝數(shù)控程序的編制。六、進(jìn)度計(jì)劃: 2007年3月13日至3月31日進(jìn)行為期3周的生產(chǎn)實(shí)習(xí);4月1日至4月10日完成對(duì)設(shè)計(jì)題目的資料收集與查詢;4月11日至5月10日完成對(duì)設(shè)計(jì)圖紙的繪制;5月11日至6月10日完成畢業(yè)設(shè)計(jì)說(shuō)明書的編寫;6月11日至6月20日最后的審稿及說(shuō)明書和圖紙的打印。 七、參考文獻(xiàn)資料:許鎮(zhèn)宇.機(jī)械零件.北京:高等教育出版社,1983;孔慶復(fù).計(jì)算機(jī)輔助設(shè)計(jì)與制造.哈爾濱:哈爾濱工業(yè)大學(xué)出版社,1994;雷宏.機(jī)械工程基礎(chǔ).哈爾濱:黑龍江出版社 2002;王中發(fā).實(shí)用機(jī)械設(shè)計(jì).北京:北京理工大學(xué)出版社 1998; 唐宗軍.機(jī)械制造基礎(chǔ).大連:機(jī)械工業(yè)出版社 1997;吳祖育,秦鵬飛.數(shù)控機(jī)床.上海:上??茖W(xué)技術(shù)出版社 2003;許翔泰,劉艷芳. 數(shù)控加工編程實(shí)用技術(shù).北京:機(jī)械工業(yè)出版社2000;吳明友.數(shù)控機(jī)床加工技術(shù) 東南大學(xué)出版社.江蘇:2000;王寶成.現(xiàn)代數(shù)控機(jī)床.天津:天津科學(xué)技術(shù)出版社,2000;廖效果,朱啟俅.數(shù)字控制機(jī)床.江西:華中科技大學(xué)出版社,2002;王衛(wèi)兵.數(shù)控編程100例.機(jī)械工業(yè)出版社,2004;張樹森.機(jī)械工程學(xué).遼寧;東北大學(xué)出版社,2001;應(yīng)云天.俄文翻譯手冊(cè).北京:高等教育出版社,1999;金蓓.數(shù)控加工的編程技巧.航空精密制造技術(shù).成都:2002,2;鄧星鐘. 機(jī)電傳動(dòng)控制(第三版). 武漢: 華中科技大學(xué)出版社, 2001; 指 導(dǎo) 教 師: 院(系)主管領(lǐng)導(dǎo): 年 月 日附錄2 外文翻譯(外文部分)ADVANCED MACHINING PROCESSES As the hardware of an advanced technology becomes more complex, new and visionary approaches to the processing of materials into useful products come into common use. This has been the trend in machining processes in recent years. Advanced methods of machine control as well as completely different methods of shaping materials have permitted the mechanical designer to proceed in directions that would have been totally impossible only a few years ago. Parallel development in other technologies such as electronics and computers have made available to the machine tool designer methods and processes that can permit a machine tool to far exceed the capabilities of the most experienced machinist. In this section we will look at CNC machining using chip-making cutting tools. CNC controllers are used to drive and control a great variety of machines and mechanisms, Some examples would be routers in wood working; lasers, plasma-arc, flame cutting, and waterjets for cutting of steel plate; and controlling of robots in manufacturing and assembly. This section is only an overview and cannot take the place of a programming manual for a specific machine tool. Because of the tremendous growth in numbers and capability of computers ,changes in machine controls are rapidly and constantly taking place. The exciting part of this evolution in machine controls is that programming becomeseasier with each new advanced in this technology.Advantages of Numerical Control A manually operated machine tool may have the same physical characteristics as a CNC machine, such as size and horsepower. The principles of metal removal are the same. The big gain comes from the computer controlling the machining axes movements. CNC-controlled machine tools can be as simple as a 2-axis drilling machining center (Figure O-1). With a dual spindle machining center, the low RPM, high horsepower spindle gives high metal removal rates. The high RPM spindle allows the efficient use of high cutting speed tools such as diamonds and small diameter cutters (Figure O-2). The cutting tools that remove materials are standard tools such as milling cutters, drills, boring tools, or lathe tools depending on the type of machine used. Cutting speeds and feeds need to be correct as in any other machining operation. The greatest advantage in CNC machining comes from the unerring and rapid positioning movements possible. A CNC machine does dot stop at the end of a cut to plan its next move; it does not get fatigued; it is capable of uninterrupted machining error free, hour after hour. A machine tool is productive only while it is making chips. Since the chip-making process is controlled by the proper feeds and speeds, time savings can be achieved by faster rapid feed rates. Rapid feeds have increased from 60 to 200 to 400 and are now often approaching 1000 inches per minute (IPM). These high feed rates can pose a safety hazard to anyone within the working envelope of the machine tool. Complex contoured shapes were extremely difficult to product prior to CNC machining .CNC has made the machining of these shapes economically feasible. Design changes on a part are relatively easy to make by changing the program that directs the machine tool. A CNC machine produces parts with high dimensional accuracy and close tolerances without taking extra time or special precautions, CNC machines generally need less complex work-holding fixtures, which saves time by getting the parts machined sooner. Once a program is ready and production parts, each part will take exactly the same amount of time as the previous one. This repeatability allows for a very precise control of production costs. Another advantage of CNC machining is the elimination of large inventories; parts can be machined as needs .In conventional production often a great number of parts must be made at the same time to be cost effective. With CNC even one piece can be machined economically .In many instances, a CNC machine can perform in one setup the same operations that would require several conventional machines. With modern CNC machine tools a trained machinist can program and product even a single part economically .CNC machine tools are used in small and large machining facilities and range in size from tabletop models to huge machining centers. In a facility with many CNC tools, programming is usually done by CNC programmers away from the CNC tools. The machine control unit (MCU) on the machine is then used mostly for small program changes or corrections. Manufacturing with CNC tools usually requires three categories of persons. The first is the programmer, who is responsible for developing machine-ready code. The next person involved is the setup person, who loads the raw stork into the MCU, checks that the correct tools are loaded, and makes the first part. The third person is the machine and unloads the finished parts. In a small company, one person is expected to perform all three of these tasks. CNC controls are generally divided into two basic categories. One uses a ward address format with coded inputs such as G and M codes. The other users a conversational input; conversational input is also called user-friendly or prompted input. Later in this section examples of each of these programming formats in machining applications will be describes.CAM and CNC CAM systems have changed the job of the CNC programmer from one manually producing CNC code to one maximizing the output of CNC machines. Since CNC machine tools are made by a great number of manufacturers, many different CNC control units are in use. Control units from different manufacturers use a variety of program formats and codes. Many CNC code words are identical for different controllers, but a great number vary from one to another. To produce an identical part on CNC machine tools with different controllers such as one by FANCU, OKUMA or DYNAPATH, would require completely different CNC codes. Each manufacturer is constantly improving and updating its CNC controllers. These improvements often include additional code words plus changes in how the existing code works. A CAM systems allows the CNC programmer to concentrate on the creation of an efficient machining process, rather then relearning changed code formats. A CNC programmer looks at the print of a part and then plans the sequence of machining operations necessary to make it (Figure O-3). This plan includes everything, from the selection of possible CNC machine tools, to which tooling to use, to how the part is held while machining takes place. The CNC programmer has to have a thorough understanding of all the capacities and limitations of the CNC machine tools that a program is to be made for. Machine specifications such as horsepower, maximum spindle speeds, workpiece weight and size limitations, and tool changer capacity are just some of the considerations that affect programming. Another area of major importance to the programmer is the knowledge of machining processes. An example would be the selection of the surface finish requirement specified in the part print. The sequence of machining processes is critical to obtain acceptable results. Cutting tool limitations have to be considered and this requires knowledge of cutting tool materials, tool types, and application recommendations. A good programmer will spend a considerable amount of time in researching the rapidly growing volume of new and improved tools and tool materials. Often the tool that was on the cutting edge of technology just two years ago is now obsolete. Information on new tools can come from catalogs or tool manufacturers tooling engineers. Help in tool selection or optimum tool working conditions can also be obtained from tool manufacturer software. Examples would be Kennametals TOOLPRO, software designed to help select the best tool grade, speed, and feed rates for different work materials in turning application. Another very important feature of TOOLPRO is the display of the horsepower requirement for each machining selection. This allow the programmer to select a combination of cutting speed, feed rate, and depth of cut that equals the machines maximum horsepower for roughing cuts. For a finishing cut, the smallest diameter of the part being machined is selected and then the cutting speed varied until the RPM is equal to the maximum RPM of the machine. This helps in maximizing machining efficiency. Knowing the horsepower requirement for a cut is critical if more than one tool is cutting at the same time. Software for a machining center application would be Ingersoll Tool Companys Actual Chip Thickness, a program used to calculate the chip thickness in relation to feed-per-tooth for a milling cutter, especially during a shallow finishing cut. Ingersolls Rigidity Analysis software ealculates tool deflection for end mills as a function of tool stiffness and tool force. To this point we looked at some general qualifications that a programmer should possess. Now we examine how a CAM system works. Point Control Companys SmartCam system uses the following approach. First, the programmer makes a mental model of the part to be machined. This includes the kind of machining to be performed-turning or milling. Then the part print is studied to develop a machining sequence, roughing and finishing cuts, drilling, tapping, and boring operations. What work-holding device is to be used, a vise or fixture or clamps? After these considerations, computer input can be started. First comes the creation of a JOBPLAN. This JOBPLAN consists of entries such as inch or metric units, machine type, part ID, type of workpiece material, setup notes, and a description of the required tools. This line of information describes the tool by number, type, and size and includes the appropriate cutting speed and feed rate. After all the selected tools are entered, the file is saved. The second programming step is the making of the part. This represents a graphic modeling of the projected machining operation. After selecting a tool from the prepared JOBPLAN, parameters for the cutting operation are entered. For a drill, once the coordinate location of the hole and the depth are given, a circle appears on that spot. If the location is incorrect, the UNDO command erases this entry and allows you to give new values for this operation. When an end mill is being used, cutting movements (toolpath) are usually defined as lines and arcs. As a line is programmed, the toolpath is graphically displayed and errors can be corrected instantly. At any time during programming, the command SHOWPATH will show the actual toolpath for each of the programmed tools. The tools will be displayed in the sequence in which they will be used during actual machining. If the sequence of a tool movement needs to be changed, a few keystrokes will to that. Sometimes in CAM the programming sequence is different from the actual machining order. An example would be the machining of a pocket in a part. With CAM, the finished pocket outline is programmed first, then this outline is used to define the roughing cuts to machine the pocket. The roughing cuts are computer generated from inputs such as depth and width of cut and how much material to leave for the finish cut. Different roughing patterns can be tried out to allow the programmer to select the most efllcient one for the actual machining cuts. Since each tool is represented by a different color, it is easy to observe the toolpath made by each one. A CAM system lets the programmer view the graphics model from varying angles, such as a top, front, side, or isometric view. A toolpath that looks correct from a top view, may show from a front view that the depth of the cutting tool is incorrect. Changes can easily be made and seen immediately. When the toolpath and the sequence of operations are satisfactory, machine ready code has to be made. This is as easy as specifying the CNC machine that is to be used to machine the part. The code generator for that specific CNC machine during processing accesses four different files. The JOBPLAN file for the tool information and the GRAPHICE file for the toolpath and cutting sequence. It also uses the MACHINE DEFINE file which defines the CNC code words for that specific machine. This file also supplies data for maximum feed rates, RPM, toolchange times, and so on. The fourth file taking part in the code generating process is the TEMPLATE file. This file acts like a ruler that produces the CNC code with all of its parts in the right place and sequence. When the code generation is complete, a projected machining time is displayed. This time is calculated from values such as feed rates and distances traveled, noncutting movements at maximum feed rates between points, tool change times, and so on. The projected machining time can be revised by changing tooling to allow for higher metal removal rates or creating a more efficient toolpath. This display of total time required can also be used to estimate production costs. If more then one CNC machine tool is available to machine this part, making code and comparing the machining time may show that one machine is more efficient than the others.CAD/CAM Another method of creating toolpath is with the use of a Computer-aided Drafting (CAD) file. Most machine drawings are created using computers with the description and part geometry stored in the computer database. SmartCAM, though its CAM CONNECTION, will read a CAD file and transfer its geometry represents the part profile, holes, and so on. The programmer still needs to prepare a JOBPLAN with all the necessary tools, but instead of programming a profile line by line, now only a tool has to be assigned to an existing profile. Again, using the SHOWPATH function will display the toolpath for each tool and their sequence. Constant research and developments in CAD/CAM interaction will change how they work with each other. Some CAD and CAM programs, if loaded on the same computer, make it possible to switch between the two with a few keystrokes, designing and programming at the same time. The work area around the machine needs to be kept clean and clear of obstructions to prevent slipping or tripping. Machine surfaces should not be used as worktables. Use proper lifting methods to handle heavy workpieces, fixtures, or heavy cutting tools. Make measurements only when the spindle has come to a complete standstill. Chips should never be handled with bare hands. Before starting the machine make sure that the work-holding device and the workpiece are securely fastened. When changing cutting tools, protect the workpiece being machined from damage, and protect your hands from sharp cutting edges. Use only sharp cutting tools. Check that cutting tools are installed correctly and securely. Do not operate any machine controls unless you understand their function and what they will do.The Early Development Of Numerically Controlled Machine Tools The highly sophisticated CNC machine tools of today, in the vast and diverse range found throughout the field of manufacturing processing, started from very humble beginnings in a number of the major industrialized countries. Some of the earliest research and development work in this field was completed in USA and a mention will be made of the UKs contribution to this numerical control development. A major problem occurred just after the Second World War, in that progress in all areas of military and commercial development had been so rapid that the levels of automation and accuracy required by the modern industrialized world could not be attained from the lab our intensive machines in use at that time. The question was how to overcome the disadvantages of conventional plant and current manning levels. It is generally ackonwledged that the earliest work into numerical control was the study commissioned in 1947 by the US government. The studys conclusion was that the metal cutting industry throughout the entire country could not copy with the demands of the American Air Force, let alone the rest of industry! As a direct result of the survey, the US Air Force contracted the Persons Corporation to see if they could develop a flexible, dynamic, manufacturing system which would maximize productivity. The Massachusetts Institute of Technology (MIT) was sub-contracted into this research and development by the Parsons Corporation, during the period 1949-1951,and jointly they developed the first control system which could be adapted to a wide range of machine tools. The Cincinnati Machine Tool Company converted one of their standard 28 inch Hydro-Tel milling machines or a three-axis automatic milling made use of a servo-mechanism for the drive system on the axes. This machine made use of a servomechanism for the drive system on the axes, which controlled the table positioning, cross-slide and spindle head. The machine cab be classified as the first truly three axis continuous path machine tool and it was able to generate a required shape, or curve, by simultaneous slide way motions, if necessary. At about the same times as these American advances in machine tool control were taking Place, Alfred Herbert Limited in the United Kingdom had their first Mutinous path control system which became available in 1956.Over the next few years in both the USA and Europe, further development work occurred. These early numerical control developments were principally for the aerospace industry, where it was necessary to cut complex geometric shapes such as airframe components and turbine blades. In parallel with this development of sophisticated control systems for aerospace requirements, a point-to-point controller was developed for more general machining applications. These less sophisticated point-to-point machines were considerably cheaper than their more complex continuous path cousins and were used when only positional accuracy was necessary. As an example of point-to-point motion on a machine tool for drilling operations, the typical movement might be fast traverse of the work piece under the drills position-after drilling the hole, anther rapid move takes place to the next holes position-after retraction of the drill. Of course, the rapid motion of the slideways could be achieved by each axis in a sequential and independent manner, or simultaneously. If a separate control was utilisec for each axis, the former method of table travel was less essential to avoid any backlash in the system to obtain the required degree of positional accuracy and so it was necessary that the approach direction to the next point was always the same. The earliest examples of these cheaper point-to-point machines usually did not use recalculating ball screws; this meant that the motions would be sluggish, and sliderways would inevitably suffer from backlash, but more will be said about this topic later in the chapter. The early NC machines were, in the main, based upon a modified milling machine with this concept of control being utilized on turning, punching, grinding and a whole host of other machine tools later. Towards the end of the 1950s,hydrostatic slideways were often incorporated for machine tools of highly precision, which to sonic extent overcame the section problem associated with conventional slideway response, whiles averaging-out slideway inaccuracy brought about a much increased preasion in the machine tool and improved their control characteristics allows concept of the machining center was the product of this early work, as it allowed the machine to manufacture a range of components using a wide variety of machining processes at a single set-up, without transfer of workpieces to other vari
收藏