2019-2020年高中數(shù)學(xué) 3.2 立體幾何中的向量方法教案 北師大版選修2-1.doc
《2019-2020年高中數(shù)學(xué) 3.2 立體幾何中的向量方法教案 北師大版選修2-1.doc》由會員分享,可在線閱讀,更多相關(guān)《2019-2020年高中數(shù)學(xué) 3.2 立體幾何中的向量方法教案 北師大版選修2-1.doc(2頁珍藏版)》請?jiān)谘b配圖網(wǎng)上搜索。
2019-2020年高中數(shù)學(xué) 3.2 立體幾何中的向量方法教案 北師大版選修2-1利用向量方法求解空間距離問題,可以回避此類問題中大量的作圖、證明等步驟,而轉(zhuǎn)化為向量間的計(jì)算問題例如圖,已知正方形ABCD的邊長為4,E、F分別是AB、AD的中點(diǎn),GC平面ABCD,且GC2,求點(diǎn)B到平面EFG的距離分析:由題設(shè)可知CG、CB、CD兩兩互相垂直,可以由此建立空間直角坐標(biāo)系用向量法求解,就是求出過B且垂直于平面EFG的向量,它的長即為點(diǎn)B到平面EFG的距離解:如圖,設(shè)4i,4j,2k,以i、j、k為坐標(biāo)向量建立空間直角坐標(biāo)系Cxyz由題設(shè)C(0,0,0),A(4,4,0),B(0,4,0),D(4,0,0),E(2,4,0),F(xiàn)(4,2,0),G(0,0,2), ,設(shè)平面EFG,M為垂足,則M、G、E、F四點(diǎn)共面,由共面向量定理知,存在實(shí)數(shù)a、b、c,使得,(2a+4b,2b4c,2c)由平面EFG,得,于是,整理得:,解得(2a+4b,2b4c,2c)故點(diǎn)B到平面EFG的距離為說明:用向量法求點(diǎn)到平面的距離,常常不必作出垂線段,只需利用垂足在平面內(nèi)、共面向量定理、兩個(gè)向量垂直的充要條件解出垂線段對應(yīng)的向量就可以了例2已知正方體ABCD的棱長為1,求直線與AC的距離分析:設(shè)異面直線、AC的公垂線是直線l,則線段在直線l上的射影就是兩異面直線的公垂線段,所以此題可以利用向量的數(shù)量積的幾何意義求解解:如圖,設(shè)i,j,k,以i、j、k為坐標(biāo)向量建立空間直角坐標(biāo)系xyz,則有,設(shè)n是直線l方向上的單位向量,則n,n,解得或取n,則向量在直線l上的投影為n由兩個(gè)向量的數(shù)量積的幾何意義知,直線與AC的距離為- 1.請仔細(xì)閱讀文檔,確保文檔完整性,對于不預(yù)覽、不比對內(nèi)容而直接下載帶來的問題本站不予受理。
- 2.下載的文檔,不會出現(xiàn)我們的網(wǎng)址水印。
- 3、該文檔所得收入(下載+內(nèi)容+預(yù)覽)歸上傳者、原創(chuàng)作者;如果您是本文檔原作者,請點(diǎn)此認(rèn)領(lǐng)!既往收益都?xì)w您。
下載文檔到電腦,查找使用更方便
9.9 積分
下載 |
- 配套講稿:
如PPT文件的首頁顯示word圖標(biāo),表示該P(yáng)PT已包含配套word講稿。雙擊word圖標(biāo)可打開word文檔。
- 特殊限制:
部分文檔作品中含有的國旗、國徽等圖片,僅作為作品整體效果示例展示,禁止商用。設(shè)計(jì)者僅對作品中獨(dú)創(chuàng)性部分享有著作權(quán)。
- 關(guān) 鍵 詞:
- 2019-2020年高中數(shù)學(xué) 3.2 立體幾何中的向量方法教案 北師大版選修2-1 2019 2020 年高 數(shù)學(xué) 立體幾何 中的 向量 方法 教案 北師大 選修
鏈接地址:http://m.italysoccerbets.com/p-2414532.html