2018-2019版高中數(shù)學(xué) 第二章 隨機變量及其分布 2.1 離散型隨機變量及其分布列 2.1.1 離散型隨機變量學(xué)案 新人教A版選修2-3.doc
《2018-2019版高中數(shù)學(xué) 第二章 隨機變量及其分布 2.1 離散型隨機變量及其分布列 2.1.1 離散型隨機變量學(xué)案 新人教A版選修2-3.doc》由會員分享,可在線閱讀,更多相關(guān)《2018-2019版高中數(shù)學(xué) 第二章 隨機變量及其分布 2.1 離散型隨機變量及其分布列 2.1.1 離散型隨機變量學(xué)案 新人教A版選修2-3.doc(10頁珍藏版)》請在裝配圖網(wǎng)上搜索。
2.1.1離散型隨機變量學(xué)習(xí)目標1.理解隨機變量及離散型隨機變量的含義.2.了解隨機變量與函數(shù)的區(qū)別與聯(lián)系知識點一隨機變量思考1拋擲一枚質(zhì)地均勻的硬幣,可能出現(xiàn)正面向上、反面向上兩種結(jié)果,這種試驗結(jié)果能用數(shù)字表示嗎?答案可以,可用數(shù)字1和0分別表示正面向上和反面向上思考2在一塊地里種10棵樹苗,成活的棵數(shù)為x,則x可取哪些數(shù)字?答案x0,1,2,3,10.梳理(1)定義在隨機試驗中,可以確定一個對應(yīng)關(guān)系,使得每一個試驗結(jié)果都用一個確定的數(shù)字表示,數(shù)字隨著試驗結(jié)果的變化而變化,像這種隨著試驗結(jié)果變化而變化的變量稱為隨機變量(2)隨機變量常用字母X,Y,表示知識點二隨機變量與函數(shù)的關(guān)系相同點隨機變量和函數(shù)都是一種一一對應(yīng)關(guān)系區(qū)別隨機變量是隨機試驗的結(jié)果到實數(shù)的一一對應(yīng),函數(shù)是實數(shù)到實數(shù)的一一對應(yīng)聯(lián)系隨機試驗結(jié)果的范圍相當于函數(shù)的定義域,隨機變量的取值范圍相當于函數(shù)的值域知識點三離散型隨機變量1定義:所有取值可以一一列出的隨機變量稱為離散型隨機變量2特征:(1)可用數(shù)字表示(2)試驗之前可以判斷其出現(xiàn)的所有值(3)在試驗之前不能確定取何值(4)試驗結(jié)果能一一列出1離散型隨機變量的取值是任意的實數(shù)()2隨機變量的取值可以是有限個,也可以是無限個()3離散型隨機變量是指某一區(qū)間內(nèi)的任意值()類型一隨機變量的概念例1下列變量中,哪些是隨機變量,哪些不是隨機變量?并說明理由(1)某機場一年中每天運送乘客的數(shù)量;(2)某單位辦公室一天中接到電話的次數(shù);(3)明年5月1日到10月1日期間所查酒駕的人數(shù);(4)明年某天濟南青島的某次列車到達青島站的時間考點隨機變量及離散型隨機變量的概念題點隨機變量的概念解(1)某機場一年中每天運送乘客的數(shù)量可能為0,1,2,3,是隨機變化的,因此是隨機變量(2)某單位辦公室一天中接到電話的次數(shù)可能為0,1,2,3,是隨機變化的,因此是隨機變量(3)明年5月1日到10月1日期間,所查酒駕的人數(shù)可能為0,1,2,3,是隨機變化的,因此是隨機變量(4)濟南青島的某次列車到達青島站的時間每次都是隨機的,可能提前,可能準時,也可能晚點,故是隨機變量反思與感悟隨機變量的辨析方法(1)隨機試驗的結(jié)果具有可變性,即每次試驗對應(yīng)的結(jié)果不盡相同(2)隨機試驗的結(jié)果的不確定性,即每次試驗總是恰好出現(xiàn)這些結(jié)果中的一個,但在一次試驗之前卻不能肯定這次試驗會出現(xiàn)哪一個結(jié)果如果一個隨機試驗的結(jié)果對應(yīng)的變量具有以上兩點,則該變量即為隨機變量跟蹤訓(xùn)練1擲均勻硬幣一次,隨機變量為()A擲硬幣的次數(shù)B出現(xiàn)正面向上的次數(shù)C出現(xiàn)正面向上的次數(shù)或反面向上的次數(shù)D出現(xiàn)正面向上的次數(shù)與反面向上的次數(shù)之和考點隨機變量及離散型隨機變量的概念題點隨機變量的概念答案B解析擲一枚硬幣,可能出現(xiàn)的結(jié)果是正面向上或反面向上,以一個標準如正面向上的次數(shù)來描述這一隨機試驗,那么正面向上的次數(shù)就是隨機變量,的取值是0,1.A項中,擲硬幣的次數(shù)就是1,不是隨機變量;C項中的標準模糊不清;D項中,出現(xiàn)正面向上的次數(shù)和反面向上的次數(shù)的和必是1,對應(yīng)的是必然事件,試驗前便知是必然出現(xiàn)的結(jié)果,所以不是隨機變量故選B.類型二離散型隨機變量的判定例2下面給出四個隨機變量:某高速公路上某收費站在未來1小時內(nèi)經(jīng)過的車輛數(shù)X是一個隨機變量;一個沿直線yx進行隨機運動的質(zhì)點,它在該直線上的位置Y是一個隨機變量;某網(wǎng)站未來1小時內(nèi)的點擊量;一天內(nèi)的溫度.其中是離散型隨機變量的為()A B C D考點隨機變量及離散型隨機變量的概念題點離散型隨機變量的概念答案C解析是,因為1小時內(nèi)經(jīng)過該收費站的車輛可一一列出;不是,質(zhì)點在直線yx上運動時的位置無法一一列出;是,1小時內(nèi)網(wǎng)站的訪問次數(shù)可一一列出;不是,1天內(nèi)的溫度是該天最低溫度和最高溫度這一范圍內(nèi)的任意實數(shù),無法一一列出故選C.反思與感悟“三步法”判定離散型隨機變量(1)依據(jù)具體情境分析變量是否為隨機變量(2)由條件求解隨機變量的值域(3)判斷變量的取值能否一一列舉出來,若能,則是離散型隨機變量;否則,不是離散型隨機變量跟蹤訓(xùn)練2某座大橋一天經(jīng)過的某品牌轎車的輛數(shù)為;某網(wǎng)站中歌曲愛我中華一天內(nèi)被點擊的次數(shù)為;體積為1 000 cm3的球的半徑長;射手對目標進行射擊,擊中目標得1分,未擊中目標得0分,用表示該射手在一次射擊中的得分上述問題中的是離散型隨機變量的是()A BC D考點隨機變量及離散型隨機變量的概念題點離散型隨機變量的概念答案B解析由題意知中的球的半徑是固定的,可以求出來,所以不是隨機變量,而是離散型隨機變量類型三用隨機變量表示隨機試驗的結(jié)果例3寫出下列隨機變量可能取的值,并說明這些值所表示的隨機試驗的結(jié)果(1)袋中有大小相同的紅球10個,白球5個,從袋中每次任取1個球,取后不放回,直到取出的球是白球為止,所需要的取球次數(shù);(2)一個袋中裝有8個紅球,3個白球,從中任取5個球,其中所含白球的個數(shù)為X.考點離散型隨機變量的可能取值題點離散型隨機變量的結(jié)果解(1)設(shè)所需的取球次數(shù)為X,則X1,2,3,4,10,11,Xi表示前(i1)次取到的均是紅球,第i次取到白球,這里i1,2,3,4,11.(2)X的所有可能取值為0,1,2,3.X0表示取5個球全是紅球;X1表示取1個白球,4個紅球;X2表示取2個白球,3個紅球;X3表示取3個白球,2個紅球反思與感悟解答此類問題的關(guān)鍵在于明確隨機變量的所有可能的取值,以及其取每一個值時對應(yīng)的意義,即一個隨機變量的取值可能對應(yīng)一個或多個隨機試驗的結(jié)果,解答過程中不要漏掉某些試驗結(jié)果跟蹤訓(xùn)練3寫出下列隨機變量可能的取值,并說明隨機變量所取的值表示的隨機試驗的結(jié)果(1)從學(xué)?;丶乙?jīng)過3個紅綠燈路口,可能遇到紅燈的次數(shù);(2)電臺在每個整點都報時,報時所需時間為0.5分鐘,某人隨機打開收音機對時間,他所等待的時間為分鐘考點離散型隨機變量的可能取值題點離散型隨機變量的取值解(1)可取0,1,2,3,0表示遇到紅燈的次數(shù)為0;1表示遇到紅燈的次數(shù)為1;2表示遇到紅燈的次數(shù)為2;3表示遇到紅燈的次數(shù)為3.(2)的可能取值為區(qū)間0,59.5內(nèi)任何一個值,每一個可能取值表示他所等待的時間1下列變量中,不是隨機變量的是()A一射擊手射擊一次命中的環(huán)數(shù)B標準狀態(tài)下,水沸騰時的溫度C拋擲兩枚骰子,所得點數(shù)之和D某電話總機在時間區(qū)間(0,T)內(nèi)收到的呼叫次數(shù)考點隨機變量及離散型隨機變量的概念題點隨機變量的概念答案B解析B中水沸騰時的溫度是一個確定的值210件產(chǎn)品中有3件次品,從中任取2件,可作為隨機變量的是()A取到產(chǎn)品的件數(shù) B取到正品的概率C取到次品的件數(shù) D取到次品的概率考點隨機變量及離散型隨機變量的概念題點隨機變量的概念答案C解析對于A中取到產(chǎn)品的件數(shù),是一個常量不是變量,B,D也是一個常量,而C中取到次品的件數(shù)可能是0,1,2,是隨機變量3下列敘述中,是離散型隨機變量的為()A某人早晨在車站等出租車的時間B把一杯開水置于空氣中,讓它自然冷卻,每一時刻它的溫度C射擊十次,命中目標的次數(shù)D袋中有2個黑球,6個紅球,任取2個,取得1個紅球的可能性考點隨機變量及離散型隨機變量的概念題點離散型隨機變量的概念答案C4從標有110的10支竹簽中任取2支,設(shè)所得2支竹簽上的數(shù)字之和為X,那么隨機變量X可能取得的值有_個考點離散型隨機變量的可能取值題點離散型隨機變量的取值答案17解析X的可能取值為3,4,5,19,共17個5甲、乙兩隊員進行乒乓球單打比賽,規(guī)定采用“七局四勝制”用表示需要比賽的局數(shù),寫出“6”時表示的試驗結(jié)果考點離散型隨機變量的可能取值題點離散型隨機變量的結(jié)果解根據(jù)題意可知,6表示甲在前5局中勝3局且在第6局中勝出或乙在前5局中勝3局且在第6局中勝出1所謂的隨機變量就是試驗結(jié)果和實數(shù)之間的一個對應(yīng)關(guān)系,隨機變量是將試驗的結(jié)果數(shù)量化,變量的取值對應(yīng)于隨機試驗的某一個隨機事件2寫隨機變量表示的結(jié)果,要看三個特征:(1)可用數(shù)來表示;(2)試驗之前可以判斷其可能出現(xiàn)的所有值;(3)在試驗之前不能確定取值一、選擇題1將一枚均勻骰子擲兩次,不能作為隨機變量的是()A兩次擲得的點數(shù)B兩次擲得的點數(shù)之和C兩次擲得的最大點數(shù)D第一次擲得的點數(shù)減去第二次擲得的點數(shù)的差考點隨機變量及離散型隨機變量的概念題點隨機變量的概念答案A解析兩次擲得的點數(shù)的取值是一個數(shù)對,不是一個數(shù)2拋擲兩枚骰子一次,X為第一枚骰子擲出的點數(shù)與第二枚擲出的點數(shù)之差,則X的所有可能的取值為()A0X5,xNB5X0,xZC1X6,xND5X5,xZ考點離散型隨機變量的可能取值題點離散型隨機變量的取值答案D解析兩次擲出點數(shù)均可取16所有整數(shù),所以X5,5,xZ.3下列變量中,離散型隨機變量的個數(shù)為()在2 012張已編號(從1號到2 012號)的卡片中取一張,被取出的號碼為;在2 012張已編號(從1號到2 012號)的卡片中任取三張,被取出的號碼和為X;某加工廠加工的某種銅管,外徑與規(guī)定的外徑尺寸之差Y;投擲一枚骰子,正面向上的點數(shù)為.A1 B2 C3 D4考點隨機變量及離散型隨機變量的概念題點離散型隨機變量的概念答案C解析中Y取值在某一區(qū)間內(nèi),不是離散型隨機變量4某人進行射擊,共有5發(fā)子彈,擊中目標或子彈打完就停止射擊,射擊次數(shù)為,則“5”表示的試驗結(jié)果是()A第5次擊中目標B第5次未擊中目標C前4次均未擊中目標D第4次擊中目標考點離散型隨機變量的可能取值題點離散型隨機變量的結(jié)果答案C解析5表示前4次均未擊中目標,故選C.5拋擲兩枚骰子各一次,記第一枚骰子擲出的點數(shù)與第二枚骰子擲出的點數(shù)的差為X,則“X4”表示的試驗的結(jié)果為()A第一枚為5點,第二枚為1點B第一枚大于4點,第二枚也大于4點C第一枚為6點,第二枚為1點D第一枚為4點,第二枚為1點考點離散型隨機變量的可能取值題點離散型隨機變量的結(jié)果答案C6設(shè)一汽車在開往目的地的道路上需經(jīng)過5盞信號燈,Y表示汽車首次停下時已通過的信號燈的盞數(shù),則表示“遇到第5盞信號燈時首次停下”的事件是()AY5 BY4CY3 DY2考點離散型隨機變量的可能取值題點離散型隨機變量的取值答案B7一串鑰匙有6枚,只有一枚能打開鎖,依次試驗,打不開的扔掉,直到找到能開鎖的鑰匙為止,則試驗次數(shù)X的最大可能取值為()A6 B5 C4 D2考點離散型隨機變量的可能取值題點離散型隨機變量的取值答案B解析由于是逐次試驗,可能前5次都打不開鎖,那么剩余的鑰匙一定能開鎖,故選B.8一用戶在打電話時忘了號碼的最后四位數(shù)字,只記得最后四位數(shù)字兩兩不同,且都大于5,于是他隨機撥最后四位數(shù)字(兩兩不同),設(shè)他撥到所要號碼時已撥的次數(shù)為,則隨機變量的所有可能取值的種數(shù)為()A24 B20 C4 D18考點離散型隨機變量的可能取值題點離散型隨機變量的取值答案A解析由于后四位數(shù)字兩兩不同,且都大于5,因此只能是6,7,8,9四位數(shù)字的不同排列,故有A24種9對一批產(chǎn)品逐個進行檢測,第一次檢測到次品前已檢測的產(chǎn)品個數(shù)為,則k表示的試驗結(jié)果為()A第k1次檢測到正品,而第k次檢測到次品B第k次檢測到正品,而第k1次檢測到次品C前k1次檢測到正品,而第k次檢測到次品D前k次檢測到正品,而第k1次檢測到次品考點離散型隨機變量的可能取值題點離散型隨機變量的結(jié)果答案D解析由題意,得k表示第一次檢測到次品前已檢測的產(chǎn)品個數(shù)為k,因此前k次檢測到的都是正品,第k1次檢測到的是次品,故選D.二、填空題10下列隨機變量中不是離散型隨機變量的是_(填序號)某賓館每天入住的旅客數(shù)量X;廣州某水文站觀測到一天中珠江的水位X;深圳歡樂谷一日接待游客的數(shù)量X;虎門大橋一天經(jīng)過的車輛數(shù)X.考點隨機變量及離散型隨機變量的概念題點離散型隨機變量的概念答案11袋中有大小相同的紅球6個,白球5個,從袋中每次任意取出1個球,直到取出的球是白球為止,所需要的取球次數(shù)為隨機變量X,則X的可能取值為_考點離散型隨機變量的可能取值題點離散型隨機變量的取值答案1,2,3,4,5,6,7解析由于取到是白球時,取球停止,所以取球次數(shù)可以是1,2,3,7.12一木箱中裝有8個同樣大小的籃球,分別編號為1,2,3,4,5,6,7,8,現(xiàn)從中隨機取出3個籃球,以表示取出的籃球的最大號碼,則8表示的試驗結(jié)果有_種考點離散型隨機變量的可能取值題點離散型隨機變量的結(jié)果答案21解析8表示在3個籃球中,一個編號是8,另外兩個從剩余7個號中選2個,有C種方法,即21種三、解答題13某車間三天內(nèi)每天生產(chǎn)10件某產(chǎn)品,其中第一天、第二天分別生產(chǎn)了1件、2件次品,而質(zhì)檢部門每天要在生產(chǎn)的10件產(chǎn)品中隨機抽取4件進行檢查,若發(fā)現(xiàn)有次品,則當天的產(chǎn)品不能通過若廠內(nèi)對車間生產(chǎn)的產(chǎn)品采用記分制,兩天全不通過檢查得0分,通過一天、兩天分別得1分、2分設(shè)該車間在這兩天內(nèi)總得分為,寫出的可能取值,并說明這些值所表示的隨機試驗的結(jié)果考點離散型隨機變量的可能取值題點離散型隨機變量的取值解的可能取值為0,1,2.0表示在兩天檢查中均發(fā)現(xiàn)了次品;1表示在兩天檢查中有1天沒有檢查到次品,1天檢查到了次品;2表示在兩天檢查中都沒有發(fā)現(xiàn)次品四、探究與拓展14在一次比賽中,需回答三個問題,比賽規(guī)則規(guī)定:每題回答正確得100分,回答不正確得100分,則選手甲回答這三個問題的總得分的所有可能取值是_考點離散型隨機變量的可能取值題點離散型隨機變量的取值答案300,100,100,300解析答對的個數(shù)可以取0,1,2,3,所對應(yīng)的得分為300,100,100,300,可取300,100,100,300.15一個袋中裝有5個白球和5個黑球,從中任取3個,其中所含白球的個數(shù)為.(1)列表說明可能出現(xiàn)的結(jié)果與對應(yīng)的的值;(2)若規(guī)定抽取3個球中,每抽到一個白球加5分,抽到黑球不加分,且最后不管結(jié)果都加上6分求最終得分的可能取值,并判定的隨機變量類型考點離散型隨機變量的可能取值題點離散型隨機變量的取值解(1)0123結(jié)果取得3個黑球取得1個白球2個黑球取得2個白球1個黑球取得3個白球(2)由題意可得56,而可能的取值范圍為0,1,2,3,所以對應(yīng)的各值是:506,516,526,536.故的可能取值為6,11,16,21,顯然為離散型隨機變量- 1.請仔細閱讀文檔,確保文檔完整性,對于不預(yù)覽、不比對內(nèi)容而直接下載帶來的問題本站不予受理。
- 2.下載的文檔,不會出現(xiàn)我們的網(wǎng)址水印。
- 3、該文檔所得收入(下載+內(nèi)容+預(yù)覽)歸上傳者、原創(chuàng)作者;如果您是本文檔原作者,請點此認領(lǐng)!既往收益都歸您。
下載文檔到電腦,查找使用更方便
9.9 積分
下載 |
- 配套講稿:
如PPT文件的首頁顯示word圖標,表示該PPT已包含配套word講稿。雙擊word圖標可打開word文檔。
- 特殊限制:
部分文檔作品中含有的國旗、國徽等圖片,僅作為作品整體效果示例展示,禁止商用。設(shè)計者僅對作品中獨創(chuàng)性部分享有著作權(quán)。
- 關(guān) 鍵 詞:
- 2018-2019版高中數(shù)學(xué) 第二章 隨機變量及其分布 2.1 離散型隨機變量及其分布列 2.1.1 離散型隨機變量學(xué)案 新人教A版選修2-3 2018 2019 高中數(shù)學(xué) 第二 隨機變量 及其 分布
鏈接地址:http://m.italysoccerbets.com/p-6092457.html